52 resultados para Drop tests.
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A new set of experimental pressure drop data, collected aboard the Russian IL-76MDK, is reported for bubbly airwater two-phase flow in a square channel with a cross-sectional area of 12x 12mm(2). The present data are compared to several frequently used empirical models, e.g. homogeneous model, Lockhart-Martinelli-Chisholm correlation and Friedel's model. It is shown that the predictions of the models mentioned above are generally not satisfied. A new homogeneous model is developed based on the analysis of the characteristics of bubbly two-phase flow at reduced gravity. It is tested with the present data and other data collected by other researchers in circular pipes. Some questions related to the present model are also discussed. (C) 2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Some Key Technics of Drop Tower Experiment Device of National Microgravity Laboratory (China) (NMLC)
Resumo:
Drop tower is an important ground based facility for microgravity science experiment. The technical performances of the drop tower NMLC are advanced compared with similar facilities in the US, Germany and Japan. The main components such as drop capsule, deceleration devices, release mechanism present its advantages and creativities.
Resumo:
The surface tension of molten tin has been determined by the sessile drop method at The surface tension of molten tin has been determined by the sessile drop method at temperatures ranging from 523 to 1033 K and in the oxygen partial pressure (P-O2) range from 2.85 x 10(-19) to 8.56 x 10(-6) MPa, and its dependence on temperature and oxygen partial pressure has been analyzed. At P-O2 = 2.85 x 10(-19) and 1.06 x 10(-15) MPa, the surface tension decreases linearly with the increase of temperature and its temperature coefficients are -0.151 and -0.094 mNm(-1) K-1, respectively. However, at high P-O2 (3.17 x 10(-10), 8.56 x 10(-6) MPa), the surface tension increases with the temperature near the melting point (505 K) and decreases above 723 K. The surface tension decrease with increasing P-O2 is much larger near the melting point than at temperatures above 823 K. The contact angle between the molten tin and the alumina substrate is 158-173degrees, and the wettability is poor.
Resumo:
The experiments of drop Marangoni migration have been performed by the drop shift facility of short period of 4.5 s, and the drop accelerates gradually to an asymptotic velocity during the free fall. The unsteady and axisymmetric model is developed to study the drop migration for the case of moderate Reynolds number Re = O(1), and the results are compared with the experimental ones in the present paper. Both numerical and experimental results show that the migration velocity for moderate Reynolds number is several times smaller than that given by the linear YGB theory.
Resumo:
给出了高Bond数下黏性液滴表面Rayleigh-Taylor线性不稳定性的分析解,这种不稳定性对于超音速气流作用下液滴破碎的早期阶段起着至关重要的作用.基于稳定性分析的结果,导出了用于估算稳定液滴的最大直径及液滴无量纲初始破碎时间的计算式,这些计算式与相关文献给出的实验和分析结果比较显示了良好的一致.
Resumo:
An optical diagnostic system designed for the microgravity experiments on Marangoni drop migrations has been depicted in the presented paper. One part of the optical system was used to image and record the drops tracks; the other part was an equal-thick interferential system, it has the ability to observe the fine structures of the drop migrations. Some ground-based experiments had been performed and the results were simply discussed in the present paper.
Resumo:
The space experimental device for testing the Marangoni drop migrations has been discussed in the present paper. The experiment is one of the spaceship projects of China. In comparison with similar devices, it has the ability of completing all the scientific experiments by both auto controlling and telescience methods. It not only can perform drop migration experiments of large Reynolds numbers but also has an equi-thick interferential system.
Resumo:
In order to improve the safety of high-energy solid propellants, a study is carried out for the effects of damage on the combustion of the NEPE (Nitrate Ester Plasticized Polyether) propellant. The study includes: (1) to introduce damage into the propellants by means of a large-scale drop-weight apparatus; (2) to observe microstructural variations of the propellant with a scanning electron microscope (SEM) and then to characterize the damage with density measurements; (3) to investigate thermal decomposition; (4) to carry out closed-bomb tests. The NEPE propellant can be considered as a viscoelastic material. The matrices of damaged samples axe severely degraded, but the particles are not. The results of the thermal decomposition and closed-bomb tests show that the microstructural damage in the propellant affects its decomposition and burn rate.
Resumo:
Niobium-silicide alloys have great potential for high temperature turbine applications. The two-phase Nb/Nb5Si3 in situ composites exhibit a good balance in mechanical properties. Using the 52 in drop tube, the effect of undercooling and rapid solidification on the solidification process and micro-structural characterization of Nb-Si eutectic alloy was studied. The microstructures of the Nb-Si composites were investigated by optics microscope (OM), X-ray diffraction (XRD) and scanning electron microscope (SEM) equipped with X-ray energy dispersive spectrometry (EDS). Up to 480 K, deep undercooling of the Nb-Si eutectic samples was successfully obtained, which corresponds to 25% of the liquidus temperature. Contrasting to the conventional microstructure usually found in the Nb-Si eutectic alloy, the microstructure of the undercooled sample is divided into the fine and coarse regions. The most commonly observed microstructure is Nb+Nb5Si3, and the Nb3Si phase is not be found. The change of coarseness of microstructure is due to different cooling rates during and after recalescence. The large undercooling is sufficient to completely bypass the high temperature phase field.
Fracture Mechanisms And Size Effects Of Brittle Metallic Foams: In Situ Compression Tests Inside Sem
Resumo:
In situ compressive tests on specially designed small samples made from brittle metallic foams were accomplished in a loading device equipped in the scanning electron microscopy (SEM). Each of the small samples comprises only several cells in the effective test zone (ETZ), with one major cell in the middle. In such a system one can not only obtain sequential collapse-process images of a single cell and its cell walls with high resolution, but also correlate the detailed failure behaviour of the cell walls with the stress-strain response, therefore reveal the mechanisms of energy absorption in the mesoscopic scale. Meanwhile, the stress-strain behaviour is quite different from that of bulk foams in dimensions of enough large, indicating a strong size effect. According to the in situ observations, four failure modes in the cell-wall level were summarized, and these modes account for the mesoscopic mechanisms of energy absorption. Paralleled compression tests on bulk samples were also carried out, and it is found that both fracturing of a single cell and developing of fracture bands are defect-directed or weakness-directed processes. The mechanical properties of the brittle aluminum foams obtained from the present tests agree well with the size effect model for ductile cellular solids proposed by Onck et al. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Micro anchor is a kind of typical structures in micro/nano electromechanical systems (MEMS/NEMS), and it can be made by anodic bonding process, with thin films of metal or alloy as an intermediate layer. At the relative low temperature and voltage, specimens with actually sized micro anchor structures were anodically bonded using Pyrex 7740 glass and patterned crystalline silicon chips coated with aluminum thin film with a thickness comprised between 50 nm and 230 nm. To evaluate the bonding quality, tensile pulling tests have been finished with newly designed flexible fixtures for these specimens. The experimental results exhibit that the bonding tensile strength increases with the bonding temperature and voltage, but it decreases with the increase of the thickness of Al intermediate layer. This kind of thickness effect of the intermediate layer was not mentioned in the literature on anodic bonding. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Thermocapillary motion of a drop in a uniform temperature gradient is investigated numerically. The three-dimensional incompressible Navier-Stokes and energy equations are solved by the finite-element method. The front tracking technique is employed to describe the drop interface. To simplify the calculation, the drop shape is assumed to be a sphere. It has been verified that the assumption is reasonable under the microgravity environment. Some calculations have been performed to deal with the thermocapillary motion for the drops of different sizes. It has been verified that the calculated results are in good agreement with available experimental and numerical results. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
An axisymmetric model is adopted to simulate the problem of unsteady drop thermocapillary motion for large Marangoni numbers. Front tracking methods are used in the investigation. It is found that the non-dimensional drop migration velocity will decrease with increasing Marangoni number. This agrees well with the experimental results obtained from the 4th Shen-Zhou space ship. In the meanwhile, this is also the first time for numerical simulations to verify the experimental phenomenon under large Marangoni numbers.
Resumo:
The experimental investigation of the thermocapillary drop migration in a vertical temperature gradient uns performed on ground. Silicon oil and pure soybean oil were used as experimental medium in drops and as continuous phases, respectively, in the present experiment. The drop migration, under the combined effects of buoyancy: and thermocapillarity, was studied for middle Reynolds numbers in order of magnitude O(10(1)). The drop migration velocities depending on drop diameters were obtained. The present experimental results show relatively small migration velocity in comparison with the one suggested by Young et nl. for linear theory of small Reynolds number. An example of flow patterns inside the drop was observed by PIV method.
Resumo:
Coordinated measurement of temperature, velocity and free surface oscillation were obtained by using the drop shaft facility for microgravity experiments of half floating zone convection. The ground-based studies gave transition from steady to oscillatory convection for multi-quantities measurement.