13 resultados para Dolomite.
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A promising application for biomass is liquid fuel synthesis, such as methanol or dimethyl ether (DME). Previous studies have studied syngas production from biomass-derived char, oil and gas. This study intends to explore the technology of syngas production from direct biomass gasification, which may be more economically viable. The ratio of H-2/CO is an important factor that affects the performance of this process. In this study, the characteristics of biomass gasification gas, such as H-2/CO and tar yield, as well as its potential for liquid fuel synthesis is explored. A fluidized bed gasifier and a downstream fixed bed are employed as the reactors. Two kinds of catalysts: dolomite and nickel based catalyst are applied, and they are used in the fluidized bed and fixed bed, respectively. The gasifying agent used is an air-steam mixture. The main variables studied are temperature and weight hourly space velocity in the fixed bed reactor. Over the ranges of operating conditions examined, the maximum H-2 content reaches 52.47 vol%, while the ratio of H-2/CO varies between 1.87 and 4.45. The results indicate that an appropriate temperature (750 degrees C for the current study) and more catalyst are favorable for getting a higher H-2/CO ratio. Using a simple first order kinetic model for the overall tar removal reaction, the apparent activation energies and pre-exponential factors are obtained for nickel based catalysts. The results indicate that biomass gasification gas has great potential for liquid fuel synthesis after further processing.
Resumo:
The anchorages are unparalleled structures only in a suspension bridge, and as main bearing facilities, play an important role in connecting the superstructures and the ground. The tunnel anchorage, as one alternative type of the anchorages, has more advantages over its counterpart, the gravity anchorage. With the tunnel anchorages adopted, not only can surface excavation be reduced to protect the environment, and natural condition of the rock be utilized and potential bearing capacity of surrounding rock be mobilized to save engineering cost, but also the technological predominance of auxiliary engineering measures, such as prestressed concrete, anchoring piles, rock anchors and collar beam between the two separated anchorages, can be easily cooperated to work together harmoniously under the circumstances of poor rock quality. There are plentiful high mountains and deep canyons in west part of China, and long-span bridge construction is inevitably encountered in order to realize leapfrogging development of the transportation infrastructure. Western mountainous areas usually possess the conditions for constructing tunnel anchorages, and therefore, the tunnel anchorages, which are conformed to the conception of resource conservative and sustainable society, extremely have application and popularization value in western underdeveloped region. The scientific and technological problem about the design, construction and operation of tunnel anchorages should be further investigated. Combining the engineering of western tunnel anchorages for the Balinghe Suspension Bridge, this paper probed into the survey method and in-situ test method for tunnel anchorages, scientific rock quality evaluation of surrounding rock to provide reasonable physical and mechanical parameters for design, construction and operation of tunnel anchorages, bearing capacity estimation for tunnel anchorage, deformation prediction of the anchorage-rockmass system, tunnel-anchorage slope stability analysis and the evaluation of excavation stability and degree of safety of the anchorage tunnel. The following outcomes were obtained: 1. Materials of tunnel anchorages of suspension bridge built (and in progress) at home and abroad were systematically sorted out, with the engineering geological condition and geomechanical property of surrounding rock around the anchorage tunnel, the design size of anchorages and the construction method of anchorage tunnel paid more emphasis on, to unveil the internal relationship between the engineering geological conditions of surrounding rock and the design size and axis angle of anchorages and provide references for future design, construction and study of tunnel anchorages. 2. Physical and mechanical parameters were recommended based on three domestic and foreign methods of rock quality evaluation. 3. In-situ tests, adopting the back-thrust method, of two kinds of reduced scale model, 1/30 and 1/20, for the tunnel anchorages were conducted in the declining exploration drift with rock mass at the test depth being the same as surrounding rock around real anchorages, and reliable field rockmass displacement data were acquired. Attenuation relation between the increment of distance from the anchorage and the decrement of rockmass displacement under maximum test load, and influential scope suffered by anchorage load were obtained. 4. Using similarity theory, the magnitude of real anchorage and rockmass displacement under design load and degree of safety of the anchorage system were deduced. Furthermore, inversion analysis to deformation modulus of slightly weathered dolomite rock, the surrounding rock of anchorage tunnel, was performed by the means of numerical simulation. 5. The influential law of the geometrical size to the limit bearing capacity of tunnel anchorage was studied. 6. Based on engineering geological survey data, accounting for the combination of strata layer and adverse discontinuities, the failure patterns of tunnel anchorage slope were divided into three modes: sliding of splay saddle pier slope, superficial-layer slippage, and deep-layer slippage. Using virtual work principle and taking anchorage load in account, the stability of the three kinds of failure patterns were analyzed in detail. 7. The step-by-step excavation of anchorage tunnel, the numerical overload and the staged decrement of rock strength parameters were numerically simulated to evaluate the excavation stability of surrounding rock around anchorage tunnel, the overload performance of tunnel anchorage, and the safety margin of strength parameters of the surrounding rock.
Resumo:
Sandstone-type uranium deposits are frequently found close to oil fields or uraniferous sandstones contain bitumen or petroleum. However, few evidence has been presented to indicate the association of uranium mineralization with petroleum oxidation. Thus, Dongsheng uranium deposit in Ordos Basin and Qianjiadian deposit in Kailu Basin are taken for examples to solve the puzzle. Integration data from sedimentary petrology, mineralogy, race elements geochemistry, isotope geochemistry and organic geochemistry, the uranium and petroleum sources, and diagenetic paragenesis of the host sandstone are analyzed, and then the genetic relationship between microbes, petroleum and uranium deposits are discussed. The observation under microscope shows that the host sandstone samples from Middle Jurassic Zhiluo Formation in the Dongsheng deposit contained different kinds of metamorphic rock fragments, which should have been derived form outcrops north to this basin. The LREE/HREE ratios of gneiss and amphibolite sampled from outcrops were close to the highest and the lowest LREE/HREE ratios of the sandstones with well-compared chondrite-normalized REE patterns, respectively. So these results consistently indicated that parent rocks of sandstones were mainly contributed from these two kinds of metamorphic rocks. There was very high Th/U ratio for granite gneiss, which was a mainly potential U resource. Hydrocarbon inclusions and adsorbed hydrocarbons are observed under fluorescence microscope in the host sandstone of Dongsheng uranium deposit, suggesting that the sandstones may have been utilized as oil migration pathways. Based on biomarker parameters, it is indicated that the inclusion oils and adsorbed hydrocarbons were marginally mature to mature, and were derived from humic-sapropel type organic matter under poor reducing freshwater to semi-saline environment. The features are similar to those of organic matter extracted from Triassic sandstone and source rock, but are different from that of cretaceous sandstone. Thus, it can be concluded that the inclusion oils and adsorbed hydrocarbons were mainly derived from Triassic lacustrine facies source rock. Observation results under Scanning Electron Microscopy and Electron Microprobe with Energy Spectrum Analysis show that, in Dongsheng area, the main uranium ore mineral is coffinite. The coffinite is intimately intergrown or coexists with pyrite and calcite, thus, the solution during mineralization stage is inferred to be alkaline. The alkaline environment is not favored for uranium to be pre-concentrated by absorption, and then be reduced abiogenetically. δ34S of pyrite and δ13C of calcite indicate that pyrite was formed by bacterial sulfate reduction (BSR) and part of the carbon of calcite has been dirived from oxidation of petroleum, respectively. Additionally, petroleum is found biodegraded. All the lines of evidence consistently indicate that petroleum was involved in uranium mineralization. Coffinite with microbe-like structures is found in the high U sandstone samples and is composed of nanoparticles, indicating the coffinite is biogenic. The conclusion are also supportted by laboratory experiment studies, which have shown that SRB are capable of utilizing U(VI) as the preferred electron acceptor for respiration and reduce U(VI) to U(IV) directly, coupled the oxidaton of organic matter and sulfate reduction. Based on the research results mentioned above, in the Dongsheng area, coffinite is likely to have formed by mixing of brine containing petroleum derived from Triassic with uranium-bearing meteoric water from outcrops north to Ordos Basin. SRB utilize hydrocarbon as carbon source, and directly reduce U(VI) resulting in precipitation of coffinite. The product of metabolism, H2S and CO2, was precipitated as pyrite and calcite during mineralization stage. Petroleum in fluid inclusions and adsorbed type in host sandstone from Lower Cretaceous Yaojia Formation in Qianjiadian uranium deposit, Kailu Basin, are derived from Jurassic Jiufotang Formation in this basin and the uranium mineral consists mainly of pitchblende. The δ34S and δ13C values of pyrite and calcite during mineralization stage indicate SRB have likely degraded petroleum, which is similar to that of Dongsheng deposit. The alkaline environment as indicated by the diagenetic mineral assemblage calcite, Fe dolomite, pyrite and pitchblende deposit suggests that U ore in the Qiangjiajiadian has a similar origin, i.e., direct reduction by SRB. However, less part of pitchblende is intergrown with kaolinite, suggesting the solution during mineralization stage is acidic. The environment is favorable for U(VI) to be adsorded on quartz or other mineral, and then reduced by H2S produced by SRB. Thus, it can be concluded that U(VI) reduction with petroleum oxidation by SRB and other microbes is an important ore-forming mechanism in petroleum-related sandstone-type uranium deposits. The finding is significant in that it provides a theoretical basis for exploration of both uranium and petroleumr.
Resumo:
Bayan Obo giant REE-Nb-Fe deposit in the northen margin of the North China Craton (NCC) is well known in the world for its abundant rare earth element resources. There is nearly one hundred year of studying history in substance component, chronology and geochemistry of the ore deposit, since the main ore body was found in 1927. However, there still exist remarkable divergences in genesis, mineralized age and material origin. Especially the REE enrichment mechanism leaves us a secret. Recent research shows that the Bayan Obo ore deposit likely resulted from the carbonatite magma activity, which is a favorable factor for REE accumulation. Based on the analysis of tectonic evolution history of north margin of NCC this thesis mainly discussed the formation background of cratonic margined rifts in Bayan Obo, and presented the analytical results of formation environment, intrusion age and deep origin of Proterozoic carbonatite magma. These research results can provide evidence for ore genesis. LA ICP-MS U-Pb dating on zircon shows that the Neoarchean basement was mainly composed of calc-alkaline TTG gneisses (2588±16Ma). The collision orogeny movement of the northen margin of the NCC between 2.0 Ga to 1.9 Ga brought the swarm of diorite-granodiotite magma (2023±16Ma) and intense regional metamorphism event (1906.3±7.7 Ma to 1892.7±6.7 Ma). In the sequent super continent break up background, intense metamorphic and deformed basement complex was uplifted to the surface suffered denudation, forming Mesoproterozoic Bayan Obo group in the contemporary continental margin rifts. The uplift of basement complex and formation of continental rifts were likely related with mantle plume activity. Evidence from petrological and geochemical data suggests that abundant alkaline-basic magma resulted from enhancement of continental breakup activity, that separated into carbonatite veins and mafic dykes by melt immiscibility mechanism, intruded in Bayan Obo margin rifts at the late stage of extension movement. Carbonatite veins can be divided into three main types by mineral composition: dolomite carbonatite, dolomite-calcite coexistent carbonatite and calcite carbonatite. Intrusion relationship between different types of carbonatite veins show that the calcite carbonatite veins were formed latter than the dolomite type as well as the coexistent type. Moreover, geochemical data also reveals successive and evolutive character between them. The content of REE increases together with the calcite minerals component. That is to say that REE gradually accumulated as the evolution of carbonatite magma. High precision Sm-Nd isochron data shows that the intrusion age of carbonatite veins was at 1319±48Ma. Moreover, the REE mineralization age in calcite carbonatite veins was around 1275±87Ma that is consistent with the intrusion age in error range. According to these data the abundant REE already existed in the carbonatite magma before intrusion and result in the earlier ore mineralization. The average age of mineralized dolomite was at 1353±100Ma, and the mineralization age of apatite in coarse grain dolomite was around 1329±150Ma. These data is consistent with carbonatite. Considering the coincident rare, trace element and isochron composition between them, it is presumed that mineralized dolomite was also the carbonatite intrusion and was the mainly factor for huge REE enrichment.
Resumo:
Bayan Obo REE-Nb-Fe ore deposit is the largest REE deposit in the world. Owing to its unique type and tremendous economic value, this deposit has widely attracted interests from geological researchers and vast amount of scientific data have been accumulated. However, its genesis, especially ore-forming age and REE sources, have been under dispute for a long time. On the basis of previous research works, this paper mainly conducts studies on the Early Paleozoic ore-forming event in the Bayan Obo deposit. The following results and conclusions can be suggested: Sm-Nd isotopic analytical results of bastnaesite, beloeilite, albite and fluorite samples from a coarse-crystalline ore lode present an isochron age of 436±35Ma. Besides, Rb-Sr isotope dating of the coarse-crystalline biotite lode that intruded into banded ores gives an isochron age of 459±39Ma. The two ages verify the exist of Early Paleozoic ore-forming event at Bayan Obo, which characterized by extensive netted mineralization of REE fluorocarbonates, aeschynite and monazite, accompanied by widely fluorite-riebeckite-aegirine-apatite alteration. Sr-Nd isotope composition of vein minerals is located between EMI and ancient lower crust component in the ISr(t)-εNd(t) correlation diagram, indicating that there is a crustal contamination during veined mineralization. A large area late Paleozoic granitoids are distributed in the southeast region of east open pit of the mine. The granitoids intruded directly into the ore-bearing dolomite, and produced intense skarnization. Moreover, at 650-660m of the drill core on 22 line and 1598m level flat in the south of East Open Pit, we firstly found skarnization rocks. Single grain and low background Rb-Sr isochrone dating on phlogopite in skarn gives 309±12Ma. Considering the intruded contacting relationship, the late Paleozoic granitoids, already extended to the under part of REE ore bodies, must be posterior to the latest intense REE mineralization, and is only a destructive tectonic and magmatic activity. Fluid inclusion types of fluorite in the Bayan Obo deposit consist of multiphase daughter mineral-bearing inclusion, two or three phase CO2-bearing inclusion and two phase aqueous inclusion. Petrography, laser Raman analysis and microthermometry study indicate that the fluids involving in REE-Nb-Fe mineralization at Bayan Obo might be mainly of H2O-CO2-NaCl-(F-REE) system. The presence of REE-carbonate as a daughter mineral in fluid inclusions shows that the original ore-forming fluids are rich in REE elements.
Resumo:
In Tarim Basin, extensive carbonates of Lower Paleozoic occur, in which thick Cambrian and Lower Ordovician dolostones are widespread and show a potential perspective in hydrocarbon exploration. So they are viewed as an important target for exploration. Tarim Basin is a poly phase composite basin, which underwent multiphase tectonic modification and volcanic activities; these exerted significant influences on the basin-fills and basin fluid evolution, thereby the diagenetic history, particularly on the deep-buried Lower Paleozoic dolostones. Referring to the classification of dolomite texture proposed by Gregg & Sibley (1984) and Sibley & Gregg (1987). In view of crystal size, crystal shape, crystal surface and contact relation, eight genetic textures of dolomite crystals are identified, based on careful petrographic examinatoins. These textures include: 1) micritic dolomite; 2) relict mimetic dolomite; 3)finely crystalline, planar-e(s), floating dolomite; 4)finely crystalline, planar-e(s) dolomite; 5) finely-coarse crystalline, nonplanar-a dolomite; 6)coarse crystalline, nonplanar saddle dolomite; 7) finely-medium crystalline, planar-e(s) dolomite cement; 8) coarse crystalline, nonplanar saddle dolomite cement, in which the former six textures occurs as in matrix, the latter two in the cements. Detailed geochemistry analysis is carried out on the basis of genetic textures of dolomite and related minerals such as quartz and calcite. The result showed that the calcite has the highest average content in Sr, which can be sorted into two groups; micritic dolomite has the highest average content in Sr among all kinds of dolomites; the REE patterns of all kinds of dolomites is similar to those of marine limestone samples. Saddle dolomite cement has δ13C values from -2.44‰ to 1.27‰ PDB, and δ18O values from -13.01‰ to -5.12‰ PDB, which partially overlap with those of matrix dolomite (δ13C values from -2.83‰ to 2.01‰ PDB, δ18O values from -10.63‰ to -0.85‰ PDB). Saddle dolomite cement has 87Sr/86Sr ratios from 0.7086 to 0.7104, which totally overlap with those of matrix dolomite (0.7084 ~ 0.7116). Compared with saddle dolomite derived from other basins all over the world, the saddle dolomites of Tarim Basin have similar δ13C, δ18O and 87Sr/86Sr ratios values with those of matrix dolomite. This scenario reflects the unusual geological setting and special dolomitizing liquid of Tarim Basin. The values of δ18O, δ13C and 87Sr/86Sr ratios of calcite also can be sorted out two groups, which may been resulted from the one stage of extensive uplift of Tarim Basin from Mesozoic to Cenozoic. Fluid inclusion microthermometry data of the diagenetic mineral indicates that matrix dolomite has relatively low homogenization temperatures (Th) of 80~105oC and salinities of 12.3% (wt% NaCl equivalent); saddle dolomite has highest Th values, which concentrate in 120~160oC and salinities of 13.5~23.7% (wt% NaCl equivalent); quartz has relatively low Th of 135~155oC and salinities of 17.8~22.5% (wt% NaCl equivalent); calcite has relatively low Th of 121~159.5oC and salinities of 1.4~17.5% (wt% NaCl equivalent). These data suggest that the saddle dolomites could have formed in thermal brine fluids. Based on comprehensive petrographical study, detailed geochemistry and fluid inclusion microthermometry analysis on Lower Paleozoic dolomite of Tarim Basin, three types of dolomitisation mechanism are proposed: Penecontemporaneous dolomitisation (Sabkha dolomitisation & Reflux dolomitisation); Burial dolomitisation (shallow-intermediate burial dolomitisation & Deep burial dolomitisation ); Hydrothermal cannibalized dolomitisation. In view of host-specified occurrences of hydrothermal dolomite, the low abundance of saddle dolomite and high geochemical similarities between saddle dolomite and host dolomite, as well as highest Th and high salinities , the hydrothermal dolomite in Tarim Basin is thus unique, which could have been precipitated in modified fluid in the host dolomite through intraformational thermal fluid cannibalization of Mg ions from the host. This scenario is different from the cases that large scale dolomitizing fluid migration took place along the fluid pathways where abundant saddle dolomite precipitated. Detailed observations on 180 petrographic and 60 casting thin sections show original pores in Lower Paleozoic dolomite were almost died out by complicated diagenetic process after a long time geologic evolution. On the other hand, deep-buried dolomite reservoirs is formed by tectonic and hydrothermal reforming on initial dolomites. Therefore, the distribution of structure-controlled hydrothermal dolomite reservoirs is predicted in Tabei and Tazhong Area of Tarim Basin based on the geophysical data.
Resumo:
Ordos Basin is one of the primary bases for petroleum exploration in our country. A series of Ordovician large gas fields were discovered, which suggest that the Lower Paleozoic carbonate, especiallly for Ordovician carbonate rocks, preserve plenty of hydrocarbon resources. Well Longtong 1 is studied as the typical exploration well. Acorrding to the specific research on the type of lithology, texture, structure and sedimentary sequence in Ordovician Majiagou Formation as well as additional data from another 20 wells, the sedimentary model has been built in Majiagou Formation. The sedimentary characteristics for each Member in Majiagou Formaiton and the feature of distribution are well understood as below: It suggests that period of Member 1, Member 3 and Member 5 in Majiagou Formation characterize with dry and hot climate as well as drop of the sea level. The area of Well Longtan 1 in the eastern basin is abundant of platform evaporite lithofacies with the depositional anhyrock and salt rock, whereas yield a suite of dolomite intercalated by the thin layers of anhyrock from the anhyrcok-dolomite platform sediment. It deposits muddy dolomite, dolomitic limestone and fine-grain dolomite in limestone-dolomite platform and restricted sea. During the stage of Member 2 and Member 4 in Majiagou Formation, the climate is wet and hot with increasing sea level. The study region occurs limestone with little dolomite in the open sea environment; but the margin area is the restricted sea settings with interbeding dolomite and limestone. Based on the thin section identification, element and isotope analysis as well as the study of texture and structure, it sugguests that the main reserviors are dolomite while the gypsum are major cap rocks. The Member 2 in Majiagou Formation is both the source rocks and the resveroirs; gypsum rocks widely occur in Member 3 as the better cap; similar to the Member 2, the Member 4 in Majiagou Formation is both the source rocks and the resveroirs; there are two source-reservoir-cap assemblages in the Member 5 alone and the cap is gypsum with high quality and great thickness, which is a favorite source-reservoir-cap assemblage.
Resumo:
Through field outcrop dolomite observation, laboratory petrography (macroscopy, microscopy, cathodeluminescence and scan electronic microscopy), geochemistry (carbon-oxygen-strontium isotopes and trace elements) and fluid inclusion microthermometry study in Keping-Bachu area of Tarim Basin, it can be inferred that there are existing eight dolomite texture types within four evolution phases in Keping-Bachu area of Tarim Basin. The paragenesis of different dolomite texture types and associated minerals in Keping-Bachu area has been established. The carbon and oxygen isotopes of saddle dolomites and matrix dolomites overlap greatly. The Strontium isotopes results of Keping-Bachu outcrop area show that the strontium isotopes differentiation of the matrix and saddle dolomites is not obvious, the reason of which is that there is thousands of Cambrian-Ordovician dolomite strata below the stratum bearing the saddle dolomite. In the process of the heat flow upward migration, the isotopes of the heat interacts with the host rock, which leads to the similarity betwwen the strontium of the saddle dolomite and matrix dolomite. The strontium isotope of the saddle dolomite is not very radiogenic. the six types samples within four phases in the study area show Eu negatively. Comparing to the other types of samples, the δEu of saddle dolomite is relatively high falling into the range of 0.510-0.874, which shows that the saddle dolomite forms in the hydrothermal setting and is affected by the hydrothermal activity to some extend.The Lan/Ybn of saddle dolomite is high up to 15.726, which means that the HREE is very rich. It belongs to the typical hydrothermal genesis model. The δCe of saddle dolomite is positive anomaly, which is the result of high effect from the land source debris. The homogeneous temperature of the saddle dolomite falls into two ranges 110-120℃ and 125-160℃, after pressure correction, they are 141-152℃,157.5-196℃, the salinity of the saddle dolomite can reach to 20-25%. With the comparing with the burial history, the Th of the saddle dolomite is high than the ambient strata temperature, these data show that the saddle dolomite is of hydrothermal origin. The evolution trend of different dolomite and associated minerals is from matrix dolomite, dolomite cementation, saddle dolomite, quartz to calcite. Alonging with this evolution trend, the temperature of the diagenetic flow initiated from 80-100℃, after rising to 135-160℃, then gradually declined. Finally, a structurally-controlled dolomitization model is established in Keping-Bachu area of Tarim Basin.
Resumo:
Widespread black chert-shales occur in the Ediacaran-Cambrian(E-C) boundary successions along the flank of Yangtze Platform, South China, remarkable changes in sedimentology, geochemistry and biology were recorded. Although extensive studies were carried out upon this boundary succession, the origin of black chert-shales still remain controversial. This paper focuses on the E-C black chert-shales in western Hunan, South China, upon which detailed depositional and geochemical changes are documented, accordingly a depositional model for black chert-shales is proposed. Stratigraphic anatomy across the depositional strike demonstrates that the shallow-water Dengying dolostone along the platform margin sharply pass basinward into the Liuchapo chert successions, which indicate syndepositional extensional faulting at depth could have occurred along the platform margin. The deep-water Niutitang phosphorite-rich black shales are either underlain by the Dengying dolostones on the platform margin toward platform interior or directly by the Liuchaopo chert successions farther basinwards. By detailed investigation, silica chimneys are firsly identified approximately in the chert along platform margin; two types of silica chimneys, including mounded and splayed/funnelized chert(generally brecciated) bodies are further sorted out. The mounded chert are exitbited by domed or hummocky surfaces on the top and irregular spongy to digitiform internal fabrics; within the silica mounds, abundant original vesicles/voids and/or channels were mostly plugged by initial chalcedony, quartze crystals with minor dolomite and bladed barite crystals. Splayed/funnelized brecciated chert “intrusion” cross-cut the uppermost dolostones capping to the horizon underneath, and are directly overlain by the Niutitang phosphorite-rich black shales. Their similarities to the silica chimneys reported from the oceanic spreading centres suggest a similar origin responsible for these unique silica bodies which is also supported by the microthermonmetric data and element geochemistry. High P, Ba, Fe contents and positive correlation between Fe and TOC concentrations in the Niutitang black shales indicate a high palaeo-productivity in the Early Cambrian ocean. The low Th/U and the high V/Cr, V/Sc, V/(V+Ni) ratios in the black shales suggest an anoxic water condition during this interval. Furthermore, Positive Eu anomalies and high Ba contents in the sediments also imply a hydrothermal influence on the formation of Niutitang black shales. To better constrain the placement of deep-water successions straddling the E-C boundary and the timing of hydrothermal silica chimneys, sensitive high-resoluton ion microprobe(SHRIMP) U-Pb dating of zircon grains from tuffs within the chert succession of Liuchapo Formation at Ganziping was conducted and yields a weighted-mean 206Pb/238Pb age at 536.6±5.5Ma, younger than E-C boundary age(542.0±0.3Ma). This age combined with carbon isotopic data is then proposed to correspond to the U-Pb age of zircons(538.2±1.5Ma) from the Zhongyicun member of Meishucun Formation at Meishucun in eastern Yunna, thus, the E-C boundary in Gazngziping was placed between the Dengying formations and Liuchapo formatioms. therefore, the silica chimneys took place at the beginning of the Cambrian period. The temporal coincidence of silica chimneys and negative excursions of δ13C and δ34Spy pairs suggest hydrothermal activities were likely responsible for the isotopic changes. Under such a circumstance, vast amounts of greenhouse gases(CO2, CH4, H2S), with highly 13C-depleted carbon and 34S-depleted sulfur would be released into the ocean and atmosphere. A positive shift in δ34Scas and Δ34S values from the late Ediacaran to the Early Cambrian could be a reflection of enhanced bacterial sulfate reduction(BSR), strengthened by the intensified oceanic anoxia stimulated by hydrothermal activities. Based on the analyses of sedimentology and geochemistry, a model- “oceanic anoxia induced by hydrothermal–volcanic activies” was proposed to responsible for the formation of black chert-shales during this E-C transition. Under this case, hydrothermal-volcanic activies could release large large amount of greenhouse into atmosphere and metal micronutrients into the ocean, which may lead to global warming, stratified ocean, thereby a high palaeoproductivity; on the other hand, the massive releasing of reduced hydrothermal fluids with abundant H2S, could have in turn enhanced the ocean anoxia. All of these were favourable the for preservation of organic matter, and subsequent extensive deposition of black silica-shales.
Resumo:
Cambrian-Ordovician dolostones in Tarim Basin are hydrocarbon reservoir rocks of vital importance. Under the guidance of the theories of sedimentology and the sedimentology of carbonate reservoir, based on the first-hand qualitative and quantitative data especially, combined with micro-study, geochemical and reservoir capacity analysis, and precursor research, the origin and reservoir characteristics of the dolostones were discussed. Based on detailed petrographic investigations, four types of dolostone have been recognized, which are, respecitively, mud-silt-sized dolostones, algal laminated dolostones (ALD), prophyritic dolostone, and neomorphic dolostone. Mud-silt-sized dolostones always presents as laminas together with evaporated signatures, its REE patterns and ΣREE are all close to that of the finely crystalline limestone. This kind of dolomite probably experienced relatively low fluid-rock ratio during diagenesis was formed in hypersaline and oxidizing environment and involved fast dolomitization process. It was dolomitized by evaporated seawater in sabkha environment.The main primary fabrics of algal lamination in algal laminated dolomite (ALD) can still be identified and its ΣREE (21.37) is very close to that of algae. This reveals that ALD was dolomitized during early diagenesis and algae possibly played an important role. The ALD was formed under mediation of organic matter and Mg2+ were supplied by magnesium concentrated algal laminites and sea water. Prophyritic dolostones presents mainly as patchy occurrence and yield the lowest δ13C and Z value. Its ΣREE is much less than that of the finely crystalline limestone. These characteristics reveal that the cloudy cores were dolomitized in shallow early diagenetic environments by pore fluids riched in Mg2+. Whereas the clear rims were likely formed in subsequent burial into deeper subsurface environments, and the Mg2+ needed for further dolomitization possibly was supplied by the transformations of clay minerals. Neomorphic dolostones consist of coarse, turbid crystals and exhibits sucrosic and mosaic textures. It has highest Fe2+ contents and average homogeneous temperature (110.2℃). Collectively, these characteristics demonstrate that the neomorphic dolostones was likely formed by recrystallization of pre-existing dolomites during deep burial. The ΣREE of the four types of dolostone distinctly differentiates from each other. However, their REE patterns are all enriched in LREE, depleted in HREE and have Eu negative anomalies. Its ΣREE 13.64 ppm, less than 1/4 of finely crystalline limestone, and ranks the lowest in the 4 types.These characteristics are comparable to those of finely crystalline limestone, and are mainly infuenced by the sea water. These four types of dolostone show similar REE mobility behaviour and no significant fractionation, althouth they have been subjected to evidently different diageneses. Seven main pore types are identified in the dolostones , which are fenestral, moldic, intercrystal, dissolved,breccia, dissolved breccia and stylolite pores. Fenestral pores are primary and the others are secondary. The dissolved pores and intercrystal pores are the most important reservoir spaces and followed by breccias and dissolved breccia pores, and the moldic and fenestral pores are less important. Stylolites can enhance permeability of reservoir rocks in one hand, for the other hand, the capacity of reservoir and permeability are enhanced and then better reservoir rocks can be formed when they are combined with patchy dolostones. The relationship between porosity and the type of dolostones is that the dissolved neomorphic dolostones have the highest porosity of 3.65%, than followed by dissolved Mud-silt-sized dolostones of 3.35%. The mud-silt-sized dolostones without dissolution have the lowest porosity of 0.90%. Moreover, the porosity of prophyritic dolostones and the neomorphic dolostones without dissolution are lower, respectively 1.675% and 1.41%. Although algal laminated dolostones consist of euhedral crystals and riched in intercrystal pores, its porosity just yields 1.20%. The relationship between permeability and the type of dolostones is that that algal laminated dolostones have the highest permeability of 0.462mD and followed by 0.065mD of prophyritic dolostones. Dissolution have no significant influence on the permeability of neomorphic dolostones and this presented by the permeability of dissolved and non-dissolved are very close, respectively 0.043mD and 0.062mD. No matter dissolved or not, mud-silt-sized dolostones are much less permeable. The permeability of non-dissolved and dissolved are 0.051mD and 0.016mD. Collectively, in the study area, neomorphic dolostones can form high quality reservoir.
Resumo:
The main research area of this thesis is Jiyang Depression in the Bohaiwan Basin and its southern margin. The object formation is Ordovician carbonate. The research is based on the outcrop observation and measurement of Ordovician carbonate and the drilling data of the oilfield. The internal reservoir characteristics of carbonate buried hill and its distribution were studied by comprehensive methods of sedimentology, reservoir geology and structural geology and technics of cathodoluminescence(CL)3electron microprobe,casting and C O isotope analysis etc. The influence depth of paleokarst facies formed during the Paleozoic is discriminated as 36-84m. The sollution porosity is well developed in paleokarst facies of Ordovician carbonate and is an important type of internal reservoir of buried hill. It may be infered that the fractures may be formed mainly during the Mesozoic and Cenozoic, they were not developed during the early Paleozoic when only micro-fractures might be created. The carbon and oxigen isotope analysis shows that the calcite cements in the fractures of Ordovician carbonate and secondary solution pores were related with meteoric water and three stages of fractures were divided. The reservoir space of Ordovician carbonate are mainly secondary porosity, cavern and fracture. The development of structural fracture was controlled by the lithology and tectonic background. More fractures exist in dolomite than that in limestone. There are also more fractures near the fault and the axis of fold. The development of porous reservoir is mainly controlled by the lithology and diagenesis, especially dolomitization and dissolution. It also results in the heterogeneity vertically. So the lithology is the basic factor for the forming of internal reservoir of buried hill and the tectogenesis and diagenesis are key factors to improve it. The porosity in carbonate might experienced solution-cementation-resolution or recementation. The porosity evolution history was a kind of historical dynamic equilibrium. The internal reservoir of Ordovician carbonate is the comprehensive result of constructive and/or destructive diagenesis. The worm's eye maps of the early Paleozoic and middle-upper Proterozoic were plotted. It was inferred that the paleostress field evoluted from NNW to NW during the Mesozoic and Cenozoic. Three types of buried hills can be divided: C-P/Pzi, Mz/ Pzi and E/ Pzi. The unconformity of the buried hill of E/ Pzi type, comparatively, was formed and reconstructed latestly, t he p orous r eservoir c ould b e w ell p reseved. T his c ondition w as v ery favorable t o t he migration and accumulation of oil and gas and could form upstanding association of source-reservoir-cap rocks. The buried hills of Mz/ Pzi and C-P/Pz] type were took second place.