7 resultados para Distribuição de Poisson
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
该文将压力Poisson方程法改进为多步迭代计算,Poisson方程中未知量改为压力的增量.称这样的方法为迭代压力Poisson方程法.其优点如下:1.能保证离散的连续方程成立(达到要求的精度,);2.Poisson方程中~2_H不必用高精度的算子,例如对二维四阶紧致格式,可取~2_H为五点中心差.Chorin方法相当于取Poisson方程中~2_H为-λ/Δt;3.与Chorin方法相比,收敛速度要快得多;4.可直接应用于三维问题.(对三维问题,~2_H可用七点中心差);5.可以推广到有限元格式.为了提高计算精度,利用三次样条函数插值的思想构造差分格式,可以在不增加网格点的情况下提高差分精度.
Resumo:
The thermodynamical model of intermittency in fully developed turbulence due to Castaing (B. Castaing, J. Phys. II France 6 (1996) 105) is investigated and compared with the log-Poisson model (Z-S, She, E. Leveque, Phys. Rev. Lett. 72 (1994) 336). It is shown that the thermodynamical model obeys general scaling laws and corresponds to the degenerate class of scale-invariant statistics. We also find that its structure function shapes have physical behaviors similar to the log-Poisson's one. The only difference between them lies in the convergence of the log-Poisson's structure functions and divergence of the thermodynamical one. As far as the comparison with experiments on intermittency is concerned, they are indifferent.
Resumo:
The effect of a negative Poisson ratio is experimentally revealed in the tension deformation of a natural layered ceramic. This effect can increase the volume strain energy per unit volume by 1100% and, simultaneously, decrease the deformation strain energy per unit volume by about 44%, so that it effectively enhances the deformation capacity by about 1 order of magnitude in the tension of the material. The present study also shows that the physical mechanisms producing the effect are attributed to the climbing on one another of the nanostructures in the natural material, which provides a guide to the design of synthetic toughening composites.
Resumo:
首先给出四阶精度交错网格紧致差分格式; 其次讨论了满足等价性的压力Poisson方程; 然后给出了一种新的解压力Poisson方程的ADI迭代法; 最后, 讨论了驱动方腔流动数值计算.
Resumo:
本文在地震的发生时间服从Poison过程,而地震震级服从GutenbergRichter关系的前提下,对不同定义的加卸载响应比Y值的随机分布进行了探讨。结果表明:当在计算窗口的地震发生的期望数目较大(>40)时,Y1~Y5值的分布基本稳定,出现高加卸载响应比的概率极低。然而当计算窗口的地震期望数目过小时,Y2~Y5值则变得不太稳定。也就是说,服从Poison过程的地震序列,在计算窗口的地震期望数目过小时,也可能产生Y值较高的结果。为了使利用加卸载响应比预测地震更加可靠,文中给出了Y1、Y3在Poison模型下的90%、95%和99%的置信区间,这对判别加卸载响应比异常是非常有用的。