90 resultados para Discrete Fourier transforms
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The concept of an extended fractional Fourier transform (FRT) is suggested. Previous PBT's and complex FRT's are only its subclasses. Then, through this concept and its method, we explain the physical meaning of any optical Fresnel diffraction through a lens: It is just an extended FRT; a lens-cascaded system can equivalently be simplified to a simple analyzer of the FRT; the two-independent-parameter FRT of an object illuminated with a plane wave can be readily implemented by a lens of arbitrary focal length; when cascading, the Function of each lens unit and the relationship between the adjacent ones are clear and simple; and more parameters and fewer restrictions on cascading make the optical design easy. (C) 1997 Optical Society of America.
Resumo:
The numerical simulation of the wavefronts diffracted by apertures with circular symmetry is realized by a numerical method. It is based on the angular spectrum of plane waves, which ignored the vector nature of light. The on-axial irradiance distributions of plane wavefront and Gauss wavefront diffracted by the circular aperture have been calculated along the propagation direction. Comparisons of the simulation results with the analytical results and the experimental results tell us that it is a feasible method to calculate the diffraction of apertures. (c) 2006 Published by Elsevier GmbH.
Resumo:
在正弦相位调制(SPM)干涉仪中,若调制频率或者采样频率发生变化将使干涉信号出现频谱泄漏,减小了谐波分量的幅值,在测量结果中引入了误差。对频谱泄漏的产生及其对测量精度的影响进行了理论分析,获得了频谱泄漏引入测量误差的计算方法。实验测得频率漂移量在-0.3~0.3 Hz内,得到的频谱泄漏引入的误差为0.3~7.9 nm,当超出这个范围时,频谱泄漏误差将迅速增长。实验结果与模拟分析结果一致。
Resumo:
In this paper, an efficient iterative discrete Fourier transform (DFT) -based channel estimator with good performance for multiple-input and multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems such as IEEE 802.11n which retain some sub-carriers as null sub-carriers (or virtual carriers) is proposed. In order to eliminate the mean-square error (MSE) floor effect existed in conventional DFT-based channel estimators, we proposed a low-complexity method to detect the significant channel impulse response (CIR) taps, which neither need any statistical channel information nor a predetermined threshold value. Analysis and simulation results show that the proposed method has much better performance than conventional DFT-based channel estimators and without MSE floor effect.
Resumo:
基于离散傅里叶变换提出了一种通用的门限密码学中恢复分享秘密的算法。该算法是离散傅里叶变换在门限密码学中的首次应用。利用该算法,门限密码体制可以有效地达到鲁棒性和自适应安全性。同时,引入了设计有效的鲁棒自适应安全的门限密码体制的新的通用技术。
Resumo:
基于量化索引调制(QIM)的隐写技术正日益受到隐写分析的威胁。该文将通常在DCT域隐写的做法改为在非均匀DCT域进行,将参数作为密钥,提出了一种NDCT-QIM图像隐写方法。由于在攻击者猜测的域中,嵌入信号具有扩散性,NDCT-QIM方法不利于隐写分析对隐写特征的检测,分析和实验表明,它能够更好地抵御基于梯度能量、直方图及小波统计特征等常用统计量的隐写分析,增强了隐写的隐蔽性。
Resumo:
利用SHACAL-2的一个17轮差分非线性区分器,结合被猜测子密钥空间分割的方法和快速傅立叶变换,提出了一种攻击33轮SHACAL-2的新方法.该方法攻击33轮SHACAL-2需要244的选择明文、2496.6的33轮SHACAL-2加密和2502次算术运算,攻击成功概率为99%.与已有的结果相比较,新攻击有效地提高了单密钥下SHACAL-2的攻击轮数.
Resumo:
Watermarking aims to hide particular information into some carrier but does not change the visual cognition of the carrier itself. Local features are good candidates to address the watermark synchronization error caused by geometric distortions and have attracted great attention for content-based image watermarking. This paper presents a novel feature point-based image watermarking scheme against geometric distortions. Scale invariant feature transform (SIFT) is first adopted to extract feature points and to generate a disk for each feature point that is invariant to translation and scaling. For each disk, orientation alignment is then performed to achieve rotation invariance. Finally, watermark is embedded in middle-frequency discrete Fourier transform (DFT) coefficients of each disk to improve the robustness against common image processing operations. Extensive experimental results and comparisons with some representative image watermarking methods confirm the excellent performance of the proposed method in robustness against various geometric distortions as well as common image processing operations.
Resumo:
Discrete wavelets transform (DWT). was applied to noise on removal capillary electrophoresis-electrochemiluminescence (CE-ECL) electropherograms. Several typical wavelet transforms, including Haar, Daublets, Coiflets, and Symmlets, were evaluated. Four types of determining threshold methods, fixed form threshold, rigorous Stein's unbiased estimate of risk (rigorous SURE), heuristic SURE and minimax, combined with hard and soft thresholding methods were compared. The denoising study on synthetic signals showed that wave Symmlet 4 with a level decomposition of 5 and the thresholding method of heuristic SURE-hard provide the optimum denoising strategy. Using this strategy, the noise on CE-ECL electropherograms could be removed adequately. Compared with the Savitzky-Golay and Fourier transform denoising methods, DWT is an efficient method for noise removal with a better preservation of the shape of peaks.
Resumo:
With the development of seismic exploration, the target becomes more and more complex, which leads to a higher demand for the accuracy and efficiency in 3D exploration. Fourier finite-difference (FFD) method is one of the most valuable methods in complex structure exploration, which keeps the ability of finite-differenc method in dealing with laterally varing media and inherits the predominance of the phase-screen method in stablility and efficiency. In this thesis, the accuracy of the FFD operator is highly improved by using simulated annealing algorithm. This method takes the extrapolation step and band width into account, which is more suitable to various band width and discrete scale than the commonely-used optimized method based on velocity contrast alone. In this thesis, the FFD method is extended to viscoacoustic modeling. Based on one-way wave equation, the presented method is implemented in frequency domain; thus, it is more efficient than two-way methods, and is more convenient than time domain methods in handling attenuation and dispersion effects. The proposed method can handle large velocity contrast and has a high efficiency, which is helpful to further research on earth absorption and seismic resolution. Starting from the frequency dispersion of the acoustic VTI wave equation, this thesis extends the FFD migration method to the acoustic VTI media. Compared with the convetional FFD method, the presented method has a similar computational efficiency, and keeps the abilities of dealing with large velocity contrasts and steep dips. The numerical experiments based on the SEG salt model show that the presented method is a practical migration method for complex acoustical VTI media, because it can handle both large velocity contrasts and large anisotropy variations, and its accuracy is relatively high even in strong anisotropic media. In 3D case, the two-way splitting technique of FFD operator causes artificial azimuthal anisotropy. These artifacts become apparent with increasing dip angles and velocity contrasts, which prevent the application of the FFD method in 3D complex media. The current methods proposed to reduce the azimuthal anisotropy significantly increase the computational cost. In this thesis, the alternating-direction-implicit plus interpolation scheme is incorporated into the 3D FFD method to reduce the azimuthal anisotropy. By subtly utilizing the Fourier based scheme of the FFD method, the improved fast algorithm takes approximately no extra computation time. The resulting operator keeps both the accuracy and the efficiency of the FFD method, which is helpful to the inhancements of both the accuracy and the efficiency for prestack depth migration. The general comparison is presented between the FFD operator and the generalized-screen operator, which is valuable to choose the suitable method in practice. The percentage relative error curves and migration impulse responses show that the generalized-screen operator is much sensiutive to the velocity contrasts than the FFD operator. The FFD operator can handle various velocity contrasts, while the generalized-screen operator can only handle some range of the velocity contrasts. Both in large and weak velocity contrasts, the higher order term of the generalized-screen operator has little effect on improving accuracy. The FFD operator is more suitable to large velocity contrasts, while the generalized-screen operator is more suitable to middle velocity contrasts. Both the one-way implicit finite-difference migration and the two-way explicit finite-differenc modeling have been implemented, and then they are compared with the corresponding FFD methods respectively. This work gives a reference to the choosen of proper method. The FFD migration is illustrated to be more attractive in accuracy, efficiency and frequency dispertion than the widely-used implicit finite-difference migration. The FFD modeling can handle relatively coarse grids than the commonly-used explicit finite-differenc modeling, thus it is much faster in 3D modeling, especially for large-scale complex media.
Resumo:
This paper studies the stability of jointed rock slopes by using our improved three-dimensional discrete element methods (DEM) and physical modeling. Results show that the DEM can simulate all failure modes of rock slopes with different joint configurations. The stress in each rock block is not homogeneous and blocks rotate in failure development. Failure modes depend on the configuration of joints. Toppling failure is observed for the slope with straight joints and sliding failure is observed for the slope with staged joints. The DEM results are also compared with those of limit equilibrium method (LEM). Without considering the joints in rock masses, the LEM predicts much higher factor of safety than physical modeling and DEM. The failure mode and factor of safety predicted by the DEM are in good agreement with laboratory tests for any jointed rock slope.
Resumo:
In this paper the problem of a cylindrical crack located in a functionally graded material (FGM) interlayer between two coaxial elastic dissimilar homogeneous cylinders and subjected to a torsional impact loading is considered. The shear modulus and the mass density of the FGM interlayer are assumed to vary continuously between those of the two coaxial cylinders. This mixed boundary value problem is first reduced to a singular integral equation with a Cauchy type kernel in the Laplace domain by applying Laplace and Fourier integral transforms. The singular integral equation is then solved numerically and the dynamic stress intensity factor (DSIF) is also obtained by a numerical Laplace inversion technique. The DSIF is found to rise rapidly to a peak and then reduce and tend to the static value almost without oscillation. The influences of the crack location, the FGM interlayer thickness and the relative magnitudes of the adjoining material properties are examined. It is found among others that, by increasing the FGM gradient, the DSIF can be greatly reduced.
Resumo:
Based on Navier-Stokes equations and structural and flight dynamic equations of motion, dynamic responses in vertical discrete gust flow perturbation are investigated for a supersonic transport model. A tightly coupled method was developed by subiterations between aerodynamic equations and dynamic equations of motion. First, under the assumption of rigid-body and single freedom of motion in the vertical plunging, the results of a direct-coupling method are compared with the results of quasi-steady model method. Then, gust responses for the one-minus-cosine gust profile arc analyzed with two freedoms of motion in plunging and pitching for the airplane configurations with and without the consideration of structural deformation.