23 resultados para Dimère de rhodium
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Palladium, iridium, and rhodium complexes of 2-methyleneimidazolines have been synthesized by selective phosphine-assisted activation of the 2-methyl C-H bonds in 2-methylimidazolium compounds. Metallacycles of various sizes were obtained in the reaction of phosphine-tethered 2-methylimidazolium compounds and [{M(cod)X}(2)] (M = Rh or Ir cod = 1,5-cyclooctadiene: X = alkoxyl or Cl). representative complexes were characterized by X-ray crystallography. The selectivity for aliphatic C(sp(3))H versus aromatic C(sp(2))H activation could be adjusted by means of the steric bulk of the OR ligand, whereby a bulky, OR group favors activation of the 2-methyl C(sp(3))-H bond. Experimental results confirmed that a methyl C-H activation product (a seven-membered iridacycle) is the kinetic product, while the aryl C-H activation product (a six-membered iridacycle) is the thermodynamic product.
Resumo:
Reactions of the Rh hydrido complex [Rh(H)(2)(PPh3)(2)(EtOH)(2)]ClO4 (1) With nitrogen ligands such as 2-(4-thiazolyl)benzimidazole (tbz). pyridazine (pdz), imidazole (im) and pyrimidine (pmd) in CH,Cl, afforded Various mononuclear Rh hydrido complexes, [Rh(H)(2)(PPh3)(2)(tbz)]CIO4 (2), [Rh(H)(2)(PPh3)(2)(pdZ)(2)]ClO(4)(.)2CH(2)Cl(2) (3). [Rh(H)Cl(PPh3)(2)(pdz)(2)](ClO4CH2Cl2)-C-. (4). [Rh(H)(2)(PPh3)(2)(im)(2)]ClO(4)(.)2CH(2)Cl(2) (5). [Rh(H)Cl(PPh3)(2)(im)(2)](ClO4CH2Cl2)-C-. (6). [Rh(H)(2)(PPh3)(2)(pmd)(2)](ClO4CH2Cl2)-C-. (7) and the Rh non-hydrido complex [RhCl2(pmd)(4)]ClO4 (8). The Rh complexes 2. 3, 5 and 6 were crystallographically characterized. The formation process was monitored by H-1 NMR and UV-Vis spectra. In all the Rh hydrido complexes, the Rh atom is coordinated by two PPh3. ligands in trans-positions and two nitrogen ligands in the cis-positions. The remaining sites Lire occupied by one or two hydride atoms to form a saturated 18-electron framework in a slightly distorted octahedral geometry. For complex 2 an appreciable inter-molecular pi interaction is observed between planes of tbz and PPh3 ligands, while an intra-molecular hydrogen bonding interaction between C-H and Cl atoms is found in complex 6.
Resumo:
The heterobimetallic complexes Cp * Rh(CN Bu-t)(EC5H4)(2)Fe [E = S(2),Se(3), Te(4)] have been synthesized by the reaction of halfsandwich rhodium complex Cp * Rh(CNtBu) Cl-2 with Fe(C5H4ELi)(2). 2THF. Oxidation of 2,3 by AgBF4 to give ferrocenium - type salts [Cp * Rh(CNtBu) (EC5H4)(2)Fe] (+) [BF4] (-) [E = S(5),Se(6)] also occurs readily. The new complexes have been characterized by MS IR, H-1 and C-13 NMR spectroscopy and elemental analysis.
Resumo:
Never di- and trinuclear Rh complexes, [Rh-2(PPh3)(4)(H)(4)(Me2CO)(2)(mu -pyz)](ClO4)(2). EtOH and [Rh-3(PPh3),(mu -pyz)(3)](ClO4)(3). EtOH were selectively isolated from the reaction of [Rh(PPh3)(2)(H)(2)(Me2Co)(EtOH)]ClO4 with pyrazine (pyz) in Me2CO and THF, respectively. Their structures were crystallographically characterized.
Resumo:
Silica-supported Rh catalysts with different Rh particle dimensions were investigated for CO hydrogenation. The catalysts were characterized by various techniques such as TEM, H-2-TPR and N-2 adsorption to study the catalyst morphology, the size distributions of Rh particles and the silica pores. It was found that the distribution and the size of Rh particles were affected by the silica pores, and the metal grains were enclosed in the pores of the support, and thereby their growth was limited. The catalytic activity and selectivity to C-2-oxygenates for CO hydrogenation were found to be significantly controlled by the Rh particle sizes, and the higher activity and selectivity to C2-oxygenates were obtained over bigger Rh particles, within the range of the reported particle sizes.