14 resultados para Dilatation

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shear deformation can induce normal stress or hydrostatic stress in metallic glasses [ Nature Mater. 2 ( 2003) 449, Intermetallics 14 ( 2006) 1033]. We perform the bulk deformation of three-dimensional Cu46Zr54 metallic glass (MG) and Cu single crystal model systems using molecular dynamics simulation. The results indicate that hydrostatic stress can incur shear stress in MG, but not in crystal. The resultant pronounced asymmetry between tension and compression originates from this inherent shear-dilatation coexistence in MG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Taking shear-induced dilatation into consideration in shear transformation zone (STZ) operations, we derive a new yield criterion that reflects the pressure sensitivity in plastic flow in metallic glasses (MGs), which agrees well with experiments. Furthermore, an intrinsic theoretical correlation between the pressure sensitivity coefficient and the dilatation factor is revealed. It is found that the pressure sensitivity of plastic flow of MGs originates in the dilatation of microscale STZs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal stability of Nd60Fe20Co10Al10 bulk metallic glass (BMG) has been studied by differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), isochronal dilatation and compression tests. The results show that the glass transition of the BMG takes place quite gradually between about 460 and 650 K at a heating rate of 0.17 K/s. Several transformation processes are observed during continuous heating with the first crystallization process beginning at about 460 K, while massive crystallization takes place near the solidus temperature of the alloy. The positive heat of mixing between the two major constituents, Nd and Fe, and, consequently, a highly inhomogeneous composition of the attained amorphous phase are responsible for the anomalous thermal stability in this system. (C) 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Direct numerical simulation (DNS) of supercritical CO2 turbulent channel flow has been performed to investigate the heat transfer mechanism of supercritical fluid. In the present DNS, full compressible Navier-Stokes equations and Peng-Robison state equation are solved. Due to effects of the mean density variation in the wall normal direction, mean velocity in the cooling region becomes high compared with that in the heating region. The mean width between high-and low-speed streaks near the wall decreases in the cooling region, which means that turbulence in the cooling region is enhanced and lots of fine scale eddies are created due to the local high Reynolds number effects. From the turbulent kinetic energy budget, it is found that compressibility effects related with pressure fluctuation and dilatation of velocity fluctuation can be ignored even for supercritical condition. However, the effect of density fluctuation on turbulent kinetic energy cannot be ignored. In the cooling region, low kinematic viscosity and high thermal conductivity in the low speed streaks modify fine scale structure and turbulent transport of temperature, which results in high Nusselt number in the cooling condition of the supercritical CO2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The formation and mechanical properties of amorphous copper are studied using molecular dynamics simulation. The simulations of tension and shearing show that more pronounced plasticity is found under shearing, compared to tension. Apparent strain hardening and strain rate effect are observed. Interestingly, the variations of number density of atoms during deformation indicate free volume creation, especially under higher strain rate. In particular, it is found that shear induced dilatation does appear in the amorphous metal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The piezoelastodynamic field equations are solved to determine the crack velocity at bifurcation for poled ferroelectric materials where the applied electrical field and mechanical stress can be varied. The underlying physical mechanism, however, may not correspond to that assumed in the analytical model. Bifurcation has been related to the occurrence of a pair of maximum circumferential stress oriented symmetrically about the moving crack path. The velocity at which this behavior prevails has been referred to as the limiting crack speed. Unlike the classical approach, bifurcation will be identified with finite distances ahead of a moving crack. Nucleation of microcracks can thus be modelled in a single formulation. This can be accomplished by using the energy density function where fracture initiation is identified with dominance of dilatation in relation to distortion. Poled ferroelectric materials are selected for this study because the microstructure effects for this class of materials can be readily reflected by the elastic, piezoelectic and dielectric permittivity constants at the macroscopic scale. Existing test data could also shed light on the trend of the analytical predictions. Numerical results are thus computed for PZT-4 and compared with those for PZT-6B in an effort to show whether the branching behavior would be affected by the difference in the material microstructures. A range of crack bifurcation speed upsilon(b) is found for different r/a and E/sigma ratios. Here, r and a stand for the radial distance and half crack length, respectively, while E and a for the electric field and mechanical stress. For PZT-6B with upsilon(b) in the range 100-1700 m/s, the bifurcation angles varied from +/-6degrees to +/-39degrees. This corresponds to E/sigma of -0.072 to 0.024 V m/N. At the same distance r/a = 0.1, PZT-4 gives upsilon(b) values of 1100-2100 m/s; bifurcation angles of +/-15degrees to +/-49degrees; and E/sigma of -0.056 to 0.059 V m/N. In general, the bifurcation angles +/-theta(0) are found to decrease with decreasing crack velocity as the distance r/a is increased. Relatively speaking, the speed upsilon(b) and angles +/-theta(0) for PZT-4 are much greater than those for PZT-6B. This may be attributed to the high electromechanical coupling effect of PZT-4. Using upsilon(b)(0) as a base reference, an equality relation upsilon(b)(-) < upsilon(b)(0) < upsilon(b)(+) can be established. The superscripts -, 0 and + refer, respectively, to negative, zero and positive electric field. This is reminiscent of the enhancement and retardation of crack growth behavior due to change in poling direction. Bifurcation characteristics are found to be somewhat erratic when r/a approaches the range 10(-2)-10(-1) where the kinetic energy densities would fluctuate and then rise as the distance from the moving crack is increased. This is an artifact introduced by the far away condition of non-vanishing particle velocity. A finite kinetic energy density prevails at infinity unless it is made to vanish in the boundary value problem. Future works are recommended to further clarify the physical mechanism(s) associated with bifurcation by means of analysis and experiment. Damage at the microscopic level needs to be addressed since it has been known to affect the macrocrack speeds and bifurcation characteristics. (C) 2002 Published by Elsevier Science Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Direct numerical simulation (DNS) of supercritical CO2 turbulent channel flow has been performed to investigate the heat transfer mechanism of supercritical fluid. In the present DNS, full compressible Navier-Stokes equations and Peng-Robison state equation are solved. Due to effects of the mean density variation in the wall normal direction, mean velocity in the cooling region becomes high compared with that in the heating region. The mean width between high-and low-speed streaks near the wall decreases in the cooling region, which means that turbulence in the cooling region is enhanced and lots of fine scale eddies are created due to the local high Reynolds number effects. From the turbulent kinetic energy budget, it is found that compressibility effects related with pressure fluctuation and dilatation of velocity fluctuation can be ignored even for supercritical condition. However, the effect of density fluctuation on turbulent kinetic energy cannot be ignored. In the cooling region, low kinematic viscosity and high thermal conductivity in the low speed streaks modify fine scale structure and turbulent transport of temperature, which results in high Nusselt number in the cooling condition of the supercritical CO2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A systematic study on the available data of 26 metallic glasses shows that there is an intrinsic correlation between fragility of a liquid and bulk modulus of its glass. The underlying physics can be rationalized within the formalism of potential energy landscape thermodynamics. It is surprising to find that the linear correlation between the fragility and the bulk-shear modulus ratio exists strictly at either absolute zero temperature or very high frequency. Further analyses indicate that a real flow event in bulk metallic glasses is shear dominant, and fragility is in inverse proportion to shear-induced bulk dilatation. Finally, extension of these findings to nonmetallic glasses is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To uncover the physical origin of shear-banding instability in metallic glass (MG), a theoretical description of thermo-mechanical deformation of MG undergoing one-dimensional simple shearing is presented. The coupled thermo-mechanical model takes into account the momentum balance, the energy balance and the dynamics of free volume. The interplay between free-volume production and temperature increase being two potential causes for shear-banding instability is examined on the basis of the homogeneous solution. It is found that the free-volume production facilitates the sudden increase in the temperature before instability and vice versa. A rigorous linear perturbation analysis is used to examine the inhomogeneous deformation, during which the onset criteria and the internal length and time scales for three types of instabilities, namely free-volume softening, thermal softening and coupling softening, are clearly revealed. The shear-banding instability originating from sole free-volume softening takes place easier and faster than that due to sole thermal softening, and dominates in the coupling softening. Furthermore, the coupled thermo-mechanical shear-band analysis does show that an initial slight distribution of local free volume can incur significant strain localization, producing a shear band. During such a localization process, the local free-volume creation occurs indeed prior to the increase in local temperature, indicating that the former is the cause of shear localization, whereas the latter is its consequence. Finally, extension of the above model to include the shear-induced dilatation shows that such dilatation facilitates the shear instability in metallic glasses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The m-plane GaN films grown on LiAlO2(100) by metal-organic chemical vapor deposition exhibit anisotropic crystallographic properties. The Williamson-Hall plots point out they are due to the different tilts and lateral correlation lengths of mosaic blocks parallel and perpendicular to GaN[0001] in the growth plane. The symmetric and asymmetric reciprocal space maps reveal the strain of m-plane GaN to be biaxial in-plane compress epsilon(xx)=-0.79% and epsilon(zz)=-0.14% with an out-of-plane dilatation epsilon(yy)=0.38%. This anisotropic strain further separates the energy levels of top valence band at Gamma point. The energy splitting as 37 meV as well as in-plane polarization anisotropy for transitions are found by the polarized photoluminescence spectra at room temperature. (c) 2008 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A photodilatation effect of undoped a-Si:H films has been discovered by a differential dilatometric method. The film thickness has been found to increase instantaneously when the sample is exposed to light. The dilatation weakens with illumination time, following a stretched exponential law, and finally reaches a saturation value. The dilatation disappears when light is off. The results unambiguously show that the whole structure of the film becomes less compact and less stable under light exposure. The metastable change (Staebler-Wronski effect) could be a redistribution of different configurations after this photodilatation in the a-Si:H films.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Osteocytes respond to dynamic fluid shear loading by activating various biochemical pathways, mediating a dynamic process of bone formation and resorption. Whole-cell deformation and regional deformation of the cytoskeleton may be able to directly regulate this process. Attempts to image cellular deformation by conventional microscopy techniques have been hindered by low temporal or spatial resolution. In this study, we developed a quasi-three-dimensional microscopy technique that enabled us to simultaneously visualize an osteocyte's traditional bottom-view profile and a side-view profile at high temporal resolution. Quantitative analysis of the plasma membrane and either the intracellular actin or microtubule (MT) cytoskeletal networks provided characterization of their deformations over time. Although no volumetric dilatation of the whole cell was observed under flow, both the actin and MT networks experienced primarily tensile strains in all measured strain components. Regional heterogeneity in the strain field of normal strains was observed in the actin networks, especially in the leading edge to flow, but not in the MT networks. In contrast, side-view shear strains exhibited similar subcellular distribution patterns in both networks. Disruption of MT networks caused actin normal strains to decrease, whereas actin disruption had little effect on the MT network strains, highlighting the networks' mechanical interactions in osteocytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Breakup process of polyamide 6 (PA6) in polypropylene (PP) matrix under shear flow was online studied by using a Linkam CSS 450 stage equipped with optical microscopy. Both tip streaming and fracture breakup modes of PA6 droplets were observed in this study. It was reported that the droplet would break up by tip streaming model when the radio of the droplet phase viscosity to the matrix phase viscosity (n(r) = n(d)/n(m)) is smaller than 0.1 (Taylor, Proc R Soc London A 1934, 146, 501; Grace, Chem Eng Commun 1982, 14, 225; Bartok and Mason, J Colloid Sci 1959, 14, 13; Rumscheidt and Mason, J Colloid Sci 1961, 16, 238; de Bruijn, Chem Eng Sci 1993, 48, 277). However, the tip streaming model was observed even when the viscosity ratio was much greater than 0.1 (n(r) = 1.9). In this study for the tip streaming mode, small droplets were ruptured from the tip of the mother droplet. On the other hand, the mother droplet was broken into two or more daughter droplets with one or several satellite droplets between them for the fracture mode. It was found that PA6 droplet was much elongated at first, and then broke up via tip streaming or fracture to form daughter droplets or small satellite droplets with the shape of fiber or ellipse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

该论文在褐藻多糖硫酸酯已有研究工作的基础上,参考中药治肾病领域有关文献,结合中医药理论,组方成治疗慢性肾衰复方海洋新药-复方褐藻多糖硫酸酯,并进行了复方褐藻多糖硫酸酯的部分药学、初步药效学和急性毒性试验的研究.