3 resultados para Dikes.

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jiaodong Peninsula is the largest repository of gold in China. Varieties of studies have been involved in the mechanism of metallogenesis. This thesis is a part of the project "Study of basic geology related to the prespecting of the supra-large deposits" which supported by National Climbing Program of China to Prof. Zhou. One of the key scientific problems is to study the age and metallogenic dynamics of ore deposit and to understand how interaction between mantle and crust constrains on metallogenesis and lithogenesis. As Jiaodong Peninsula to be study area, the Rb-Sr, Sm-Nd and Pb isotopic systematics of pyrite and altered rocks are measured to define the age and origin of gold. The elemental and Sr-Nd-Pb isotopic compositions of dikes and granites was studied to implicate the source and lithogenesis of the dike and granite and removal of lithosphere and the interaction between mantle and crust in the Jiaodong Peninsula. Considering the tectonic of Jiaodong Peninsula, basic on the time and space, this thesis gives a metallogenic dynamics of gold mineralization and discusses the constraints of the interaction between mantle and crust on the metallogenesis and lithogenesis. This thesis reports the first direct Rb-Sr dating of pyrites and ores using sub-sampling from lode gold deposit in Linglong, Jiaodong Peninsula and the results demonstrate this as a useful geochronological technique for gold mineralization with poor age constraint. The Rb-Sr data of pyrites yields an isochron age of (121.6-122.7) Ma, whereas, those of ore and ore-pyrite spread in two ranges from 120.0 to 121.8 Ma and 110.0-111.7 Ma. Studies of characteristic of gold deposit, microscopy of pyrite and quartz indicate that the apparent ages of ore and ore-pyrite are not isochron ages, it was only mixed by two end members, i.e., the primitive hydrothermal fluids and wall rocks. However, the isochron age of pyrite samples constrains the age of gold mineralization, i.e., early Cretaceous, which is in good consistence with the published U-Pb ages of zircon by using the SHRIMP technique. The whole rock Rb-Sr isochron age of altered rocks indicates that the age of gold mineralizing in the Xincheng gold deposit is 116.6 ± 5.3 Ma. The Sr, Nd and Pb isotopic compositions of pyrite and altered rocks indicate that the gold and relevant elements were derived from multi-sources, i.e. dikes derived from enriched lithospheric mantle and granites, granodiorites and metamorphic rocks outcropped on the crust. It also shows that the hydrothermal fluids derived from mantle magma degassing had play an important role in the gold mineralizing. The major and trace elements, Sr-Nd-Pb isotopic data of granites and granodiorites suggest that the Linglong Granite and Kunyushan Granite were derived from partial melting of basement rocks in the Jiaodong Peninsula at post-collision of North China Craton with South China Craton. Guojialing Granodiorite was considered to be derived from a mixture source, that is, mixed by magmas derived from an enriched lithospheric mantle and crust during the delamination of lithosphere induced by the subduction of Izanagi Plate and the movement of Tancheng-Lujiang Fault. There are kinds of dikes occurred in the Jiaodong Peninsula, which are accompanying with gold mineralization in time and space. The dikes include gabrro, diabase, pyroxene diorite, gabrrophyre, granite-porphyry, and aplite. The whole rock K-Ar ages give two age intervals: 120-124 Ma for the dikes that erupted at the gold mineralizing stage, and <120 Ma of the dikes that intruded after gold mineralizing. According to the age and the relationship between the dikes and gold mineralizing, the dikes could be divided into two groups: Group I (t = 120-124 Ma) and Group II (t < 120Ma). Group I dikes show the high Mg and K, low Ti contents, negative Nb anomalies and positive Eu anomalies, high ~(87)Sr/~(86)Sr and negative εNd(t) values and an enrichment in light rare earth elements, large ion lithosphile elements and a depletion in high field strength elements. Thus the elemental and isotopic characteristics of the Group I dikes indicate that they were derived from an enriched lithospheric mantle perhaps formed by metasomatism of the melt derived from the recycled crustal materials during the deep subduction of continent. In contrast, the Group II dikes have high Ti, Mg and K contents, no negative Nb anomalies, high ~(87)Sr/~(86)Sr and positive or little negative εNd(t) values, which indicate the derivation from a source like OIB-source. The geochemical features also give the tectonic constraints of dikes, which show that Group I dikes were formed at continental arc setting, whereas Group II dikes were formed within plate background. Considering the tectonic setting of Jiaodong Peninsula during the period of gold mineralizing, the metallogenic dynamics was related to the subduction of Izanagi Plate, movement of Tancheng-Lujiang Fault and removal of lithopheric mantle during Late Mesozoic Era.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Fanshan complex consists of layered potassic ultramafic-syenite intrusions. The Fanshan apatite (-magnetite) deposit occurs in the Fanshan complex, and is an important style of phosphorus deposit in China. The Fanshan complex consists of three (First- to Third-) Phases of intrusion, and then the dikes. The First-Phase Intrusive contains ten typical layered rocks: clinopyroxenite, biotite clinopyroxenite, coarse-grained biotite clinopyroxenite, pegmatitic orthoclase-biotite clinopyroxenite, variegated orthoclase clinopyroxenite, interstitial orthoclase clinopyroxenite, biotite rock, biotite-apatite rock, biotite rock and magnetite-apatite rock. This layered intrusive consists of nine rhythmic units. Each rhythmic unit essentially comprises a pair of layers: clinopyroxenite at the bottom and biotite clinopyroxenite at the top. The apatite (-magnetite) deposit is situated near the top of rhythmic Unit no. 6 of the First-Phase Intrusive. The Second-Phase Intrusive contains three typical rocks: coarse-grained orthoclase clinopyroxenite, . coarse-grained salite syenite and schorlomite-salite syenite. The Third-Phase Intrusive includes pseudo-trachytic salite syenite, porphyritic augite syenite, fine-grained orthoclase clinopyroxenite and fine-grained salite syenite. The origin of the Fanshan complex is always paid attention to it in China. Because most layered igneous intrusion in the world not only have important deposit in it, but also carry many useful information for studying the formation of the intrusion and the evolvement of magma. Two sketch maps were drawn through orebodies along no. 25 cross-cut on 425 mL and no. 1 cross-cut on 491 mL in the Fanshan mine. Through this mapping, a small-scaled rhythmic layering (called sub-rhythmic layering in the present study) was newly found at the top of the rhythmic Unit no. 6. The concept of sub-rhythmic layering is defined in this article. The sub-rhythmic layering is recognized throughout this apatite-rich part, except for magnetite-apatite rock. Presence of the layered magnetite-apatite rock is one of the characteristics of the Fanshan apatite (-magnetite) deposit. Thus, from this layer downwards six units of sub-rhythmic layering are recognized in the present study. Each unit consists of biotite clinopyroxenite (or biotite rock and biotite-apatite rock) layer at the bottom and apatite rock layer at the top. To study this feature in detail is an important work for understanding the origin of the Fanshan complex and apatite (-magnetite) deposit. The origin of the Fanshan complex and the relation of the formation of the apatite(-magnetite)deposit will be interpreted by the study of sub-rhythmic layering on the basis of previous research works. The magma formed the Fanshan complex was rich in K2O, early crystallized pyroxene, and after this phase more biotite crystallized, but no amphibole appeared. This indicated that the activity of H2O in the magma was low. Major element compositions of biotite and clinopyroxene (on thin sections) in the sub-rhythmic layering were analyzed using electron microprobe analyzer. The analytical results indicate Mg/(Mg+Fe*+Mn) atomic ratios (Fe*, total iron) of these two minerals rhythmically changed in sub-rhythmic layering. The trends of Mg/(Mg+Fe*+Mn) atomic ratio (Fe*, total iron) of biotite and clinopyroxene indicate that the magma evolved markedly from relatively magnesian bottom layer to less magnesian top layer in each sub-rhythmic unit. A general trend through the sub-rhythmic layering sequence is both minerals becoming relatively magnesian upwards. The formation temperatures for sub-rhythmic layering yield values between 600 and 800 ℃, were calculated using the ratio of Mg/(Mg+Fe+Mn) in the salite and biotite assemblage. The equilibrium pressures in the rhythmic layers calculated using the contents of Al in the salite were plotted in the section map, shown a concave curve. This indicates that the magma formed the First-Phase Intrusive crystallized by two vis-a-vis ways, from its bottom and top to its centre, and the magnetite-apatite rock was crytallized in the latest stage. The values of equilibrium pressures in the sub-rhythmic layering were 3.6-6.8(xlO8) Pa with calculated using the contents of Al in the salite. The characteristics of geochemistry in various intrusive rocks and the rocks or apatite of sub-rhythmic layers indicated that the Fanshan complex formed by the comagmatic crystallization. The contents of immiscible elements and REEs of apatite rock at the top of one sub-rhythmic unit are more than biotite clinopyroxenite at the bottom. The contents of immiscible elements and REEs of apatite of biotite clinopyroxenite at the bottom of one sub-rhythmic unit are higher than apatite rock at the top. The curves of rocks (or apatite) in the upper sub-rhythmic units are between two curves of the below sub-rhythmic unit in the primitive mantle-normalized trace element abundance spider diagram and the primitive mantle-normalized REE pattern. The trend for the contents of immiscible elements and REEs inclines to the same contents from the bottom to the top in sub-rhythmic layering. These characteristics of geochemistry of rocks or apatites from sub-rhythmic layering indicate that the latter sub-rhythmic unit was produced by the residual magma after crystallization of the previous sub-rhythmic unit. The characteristics of petrology, petrochemistry, geochemistry in the Fanshan complex and sub-rhythmic layers and the trends of Mg/(Mg+Fe+Mn) atomic ratio of biotite and clinopyroxene in sub-rhytmic layering rejected the hypotheses, such as magma immiscibility, ravitational settling and multiple and pulse supplement of magma. The hypothesis of differentiation by crystallization lacks of evidences of field and excludes by this study. On the base of the trends of formation temperatures and pressures, the characteristics of petrology, petrochemistry, geochemistry for the Fanshan complex and the characteristics of geochemistry for the rocks (or apatites), the trends of Mg/(Mg+Fe+Mn) atomic ratio of biotite and clinopyroxene in sub-rhytmic layering, and the data of oxygen, hydrogen, strontium and neodymium isotopes, this study suggests that the magma formed the Fanshan complex was formed by low degree partial melting of mantle at a low activity of H2O, and went through the differentiation at the depth of mantle, then multiply intruded and crystallized. The rhythmic layers of the First-Phase Intrusive formed by the magma fractional crystallized in two vis-a-vis ways, from the bottom and top to the centre in-situ fractional crystallization. The apatite (-magnetite) deposit of the Fanshan complex occurs in sub-rhythmic layering sequence. The the origin of the sub-rhythmic layering is substantially the origin of the Fanshan apatite (-magnetite) deposit. The magma formed the rhythmic layers of First-Phase Intrusive was rich in H2O, F and P at the later stage of its in-situ fractional crystallization. The Fanshan apatite (-magnetite) deposit was formed by this residual magma in-situ fractional crystallization. The magnetite-apatite rock was crystallized by two vis-a-vis ways at the latest stage in-situ fractional crystallization in the rhythmic layers. The result was light apatite layer below heavy the magnetite-apatite layer, formed an "inversion" phenomenon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

基性岩脉具有特殊的地球动力学意义,一直是近十年来国际上研究的热点和重点。至今共举办过四次关于岩脉的国际专题大会,掀起了基性岩脉的研究高潮,分别从其分布、形态、古地磁、岩石学、地球化学、年代学和构造演化等方面进行了系统的研究。由于出露面积的关系,岩脉或岩脉群往往容易被人忽略,直到最近五年来中国东部中新生代基性岩脉的地球动力学意义才引起地质学者的关注,甚至有些学者指出中国东部中生代基性岩脉的研究可以填补国际上对此方面的空白。对中国东南部中生代基性岩脉的系统研究主要集中在粤北地区,琼南、福建沿海一带、湘东南、某些热液矿床的矿区的基性岩脉得到零星的研究,缺少对中国东南部更大范围的和系统的研究。另外,中国东南部晚中生代部分基性岩体与地壳拉张有关,但研究多集中于沿海一带,对于内陆基性岩体的构造应力体制是否与基性岩脉类似。本论文选择了江西省晚中生代以来的基性岩脉(体)为研究对象,运用矿物学、元素和同位素地球化学及K-Ar测年等研究方法,首次较为系统地研究了江西省晚中生代以来的基性岩脉、与地壳拉张有关的基性侵入岩体的地质地球化学特征,并利用对其形成时代、源区性质的研究来探讨中国东南部地壳拉张期次、地幔性质等地球动力学背景中的关键性问题。通过研究取得了以下几点初步认识:1系统地进行野外地质考察和采样,并收集前人的研究资料,发现江西省的基性岩脉的岩石类型主要为煌斑岩、辉-长辉绿岩、辉绿岩、辉绿(珍)岩等,相对较多,主要呈三条北北东向带状分布,分别为星子-上高-萍乡、德兴-余江-相山-吉安-上犹、草桃背-岩背-大吉山。2对江西省的基性岩脉和部分与地壳拉张有关的墓性岩体进行全岩K-Ar定年,结果表明,基性岩脉的形成时代为140-50Ma,再结合中国东南部发育的富碱侵入岩(包括A型花岗岩)和已发表的基性岩脉的年代学资料,作者认为中国东南部地壳拉张可能共有六期,分别为50-6OMa、90士Ma、100-11OMa、125士Ma、140士Ma、165~180 Ma。3对赣南车步辉长岩类的地质特征、矿物学和地球化学特征进行了研究,着重讨论它与沿海辉长岩类构造环境和源区性质的不同,研究表明它可能是中国东南部中侏罗世软流圈上涌、岩石圈伸展和地壳裂解的产物,而沿海白至纪辉长宕类的构造环境是弧后拉张盆地;车步辉味岩类的源区可能是未受到明显俯冲组分影响的富集地幔,而沿海白翌纪辉长岩类的源区可能包含较多俯冲组分。4对赣南大吉山地区和赣北地区早白圣世基性岩脉的地质地球化学特征进行了系统的研究,表明它们可能代表中国东南部早白至世初存在一次重要的岩石圈伸展和地壳拉张事件。但两者在岩石序列、微量元素、同位素方面存在明显不同,结合区域地质背景,认为造成赣南和赣北地区早白坐世的基性岩脉源区不同的可能原因是岩石圈地慢组成不同和/或形成基性岩脉的岩浆深度不同。5通过对江西省早白至世欧特里夫期(125士Ma)基性岩脉的地质、矿物学和地球化学特征进行研究,发现中国东南部的确存在早白至世欧特里夫期(125士Ma)基性岩脉,代表一次重要地壳拉张事件,其源区可能由亏损地幔、EMI和EMII地幔组成,后面两种类型地幔可能是先前受俯冲流体影响的成分不均一的富集岩石圈地幔。6通过对江西省早白至世未期(100-11oMa)和晚白至世(90士Ma)的基性岩脉(体)的地质地球化学特征进行研究,强有力的表明江西省存在100-110Ma、90士Ma两期地壳拉张,与粤北地区类似。本论文研究表明晚白至世的地壳拉张除了形成基性岩脉外,还形成同时代的基性岩体。这两期的基性岩脉(体)的源区可能由亏损地幔、EMI和EMll地幔组分组成,与(125士Ma)基性岩脉类似,但早白至世未期(100-110Ma)基性岩脉的源区可能含有相对较高的亏损地幔组分。7通过对江西省中部古新世的基性岩脉(体)的地质地球化学特征进行研究,发现了江西省中部的确存在50-60Ma地壳拉张事件。本期的基性岩脉(体)微量元素含量、MORB标准化模式和同位素与前面白至纪的基性岩脉(体)明显不同,软流圈参与其源区明显增多。8通过对中侏罗世以来基性岩脉(体)地质地球化学的系统研究,表明中国东南部晚中生代以来地幔性质发生了明显变化,总体变化趋势为亏损地幔代替富集地幔,这种过程与软流圈上涌、岩石圈伸展和地壳拉张有关:主要机制可能为岩石圈减薄,当然不排除其他机制。