175 resultados para Diffusion-Limited Aggregation

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports an aggregation-based method for the fabrication of composite Au/Ag nanoshells with tunable thickness and surface roughness. It is found that the resultant roughened composite Au/Ag nanoshells can attract each other spontaneously to form films at the air-water interface. Importantly, such films can be transferred onto the solid substrates without being destroyed and show excellent surface-enhanced Raman scattering (SERS) enhancement ability. Their strong enhancement ability may stem from the unique two-dimensional structure itself.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A diffusion-limited kinetic model was developed to describe the imidization of one-step polythioetherimide formation based on an endgroup diffusion model. The changes of conversion and viscosity during the imidization were monitored with thermogravimetric analysis and dynamic stress rheometry, respectively. It was observed that the imidization rate began to decelerate after a fast early stage, whereas the viscosity in the system increased dramatically after a period of low value. Amic acid and imide formations concurrently take place in the one-step polyimide formation, but the formation of amic acid is much slower than that of imide and is the rate-limiting step of imidization. When a second-order kinetic model was used to describe the imidization, the effect of viscosity on the diffusion resistance of reactive groups needed to be included. In order to predict the change of viscosity during the imidization, the Lipshitz-Macosko model was modified and introduced into the diffusion-limited kinetic model by the Stokes-Einstein equation. The comparison of the modeled results with experimental data indicated that the diffusion-limited kinetic model and the modified Lipshitz-Macosko model were able to efficiently predict the changes of conversion and viscosity with temperature and time during the one-step polythioetherimide formation. (C) 2001 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anodic bonding of Pyrex glass/Al/Si is an important bonding technique in micro/nanoelectromechanical systems (MEMS/NEMS) industry. The anodic bonding of Pyrex 7740 glass/Aluminum film/Silicon is completed at the temperature from 300 degrees C to 375 degrees C with a bonding voltage between 150 V and 450 V. The fractal patterns are formed in the intermediate Al thin film. This pattern has the fractal dimension of the typical two-dimensional diffusion-limited aggregation (2D DLA) process, and the fractal dimension is around 1.7. The fractal patterns consist of Al and Si crystalline grains, and their occurrences are due to the limited diffusion, aggregation, and crystallization of Si and Al atoms in the intermediate Al layers. The formation of the fractal pattern is helpful to enhance the bonding strength between the Pyrex 7740 glass and the aluminum thin film coated on the crystal silicon substrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

用离子束溅射法制备了锆单层薄膜.用设计新型夹具和预置种子方法,对薄膜中结瘤微缺陷的生长过程进行了研究.在高分辨率光学显微镜和扫描电子显微镜下观察发现,结瘤在其生长初期呈现出分形的特征.用分子动力学和薄膜生长的扩散限制聚集模型,薄膜中结瘤微缺陷成核时的分形现象得到了很好的解释.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Submonolayer thin films of a three-ring bent-core (that is, banana-shaped) compound, m-bis(4-n-octyloxystyryl)benzene (m-OSB), were prepared by the vacuum-deposition method, and their morphologies, structures, and phase behavior were investigated by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The films have island shapes ranging from compact elliptic or circular patterns at low temperatures (below 40 degreesC) to branched patterns at high temperatures (above 60 degreesC). This shape evolution is contrary to the prediction based on the traditional diffusion-limited aggregation (DLA) theory. AFM observations revealed that two different mechanisms governed the film growth, in which the compact islands were formed via a dewetting-like behavior, while the branched islands diffusion-mediated. It is suggested m-OSB forms a two-dimensional, liquid crystal at the low-temperature substrate that is responsible for the unusual formation of compact islands. All of the monolayer islands are unstable and apt to transform to slender bilayer crystals at room temperature. This phase transition results from the peculiar molecular shape and packing of the bent-core molecules and is interpreted as escaping from macroscopic net polarization by the formation of an antiferroelectric alignment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Self-assembled InAs/AlAs quantum dots embedded in a resonant tunneling diode device structure are grown by molecular beam epitaxy. Through the selective etching in a C6H8O7 center dot H2O-K3C6H5O7 center dot H2O-H2O2 buffer solution, 310 nm GaAs capping layers are removed and the InAs/AlAs quantum dots are observed by field-emission scanning electron microscopy. It is shown that as-fabricated quantum dots have a diameter of several tens of nanometers and a density of 10(10) cm(-2) order. The images taken by this means are comparable or slightly better than those of transmission electron microscopy. The undercut of the InAs/AlAs layer near the edges of mesas is detected and that verifies the reliability of the quantum dot images. The inhomogeneous oxidation of the upper AlAs barrier in H2O2 is also observed. By comparing the morphologies of the mesa edge adjacent regions and the rest areas of the sample, it is concluded that the physicochemical reaction introduced in this letter is diffusion limited.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although metalorganic vapor phase epitaxy (MOVPE) is generally regarded as a non-equillibrium process, it can be assumed that a chemical equilibrium is established at the vapor-solid interface in the diffusion limited region of growth rate. In this paper, an equilibrium model was proposed to calculate the relation between vapor and solid compositions for II-VI ternary alloys. Metastable alloys in the miscibility gap may not be obtained when the growth temperature is lower than the critical temperature of the system. The influence of growth temperature, reactor pressure, input VI/II ratio, and input composition of group VI reactants has been calculated for ZnSSe, ZnSeTe and ZnSTe. The results are compared with experimental data for the ZnSSe and ZnSTe systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Methacrylic acid based inverse opal hydrogels (MIOHs) have been prepared by controlling the synthesis conditions, including cross-linker content, solvent content, and water content in solvent mixtures to explore the effect of the synthesis conditions (especially solvent content and mixture) on the response performance. Various response events (pH, solvent, ionic strength, 1,4-phenylenediamine dihydrochloride (PDA) response) have been investigated. For pH, solvent response, the same response behaviors have been observed: both the increased solvent (only ethanol) content and the enhanced water content in solvent will lead to the reduced response level of MIOHs compared to that of the increased cross-linker content. However, two different kinds of response behaviors for ionic strength response have been found by adjusting the synthesis conditions. The kinetics of pH response shows characteristics of a diffusion-limited process, and the equilibrium response time is about 20 min, which cannot be reduced by changing the synthesis conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The transition of lamellar crystal orientation from flat-on to edge-on in ultrathin films of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) via solvent vapor (toluene) treatment Was investigated. When the as-prepared film was treated in saturated solvent vapor, breakout crystals could form quickly, and then they transformed from square single crystals (flat-on lamellae) to dendrites and finally to nanowire crystals (edge-on lamellae). Initially, heterogeneous nucleation tit the polymer/substrate interface dominated the structure evolution, leading to flat-on lamellar crystals orientation. And the transition from faceted habits to dendrites indicated a transition of underlying mechanism from nucleation-controlled to diffusion-limited growth. As the solvent molecules gradually diffused into the polymer/substrate interface, it will subsequently weaken the polymer-substrate interaction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A facile and wet-chemical approach was employed to control synthesis of self-organizing, hyperbranched nanoporous Au microsheet with high quality in bulk quantity. This method produced nanoporous Au microsheets with a thickness of 7-15 nm. The microsheets were composed of irregularly interconnected planar Au nanoplates with interstices, i.e. nanopores of 10-50 nm. And the nanoporous Au microsheets were enveloped in 10-30 nm thick polyaniline (PANI) sheaths. The morphology of the nanostructured Au composites could also be easily tuned by changing the concentration of aniline and chlorauric acid. The dendritic and epitaxial growth of nanoporous Au microsheet was believed as the diffusion-limited process confined in the lamellar emulsion phase through self-assembly of aniline and dodecylsulfate. The solution reaction proceeded at a mild condition (room temperature and aqueous solutions), and less toxic reagents were employed instead of extreme toxic and corrosive chemicals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Monolayer assembly of 2-mercapto-3-n-octylthiophene (MOT) having a relatively large headgroup onto gold surface from its dilute ethanolic solutions has been investigated by electrochemistry. An electrochemical capacitance measurement on the permeability of the monolayer to aqueous ions, as compared with its alkanethiol counterpart [CH3(CH2)(9)SH (DT)] with a similar molecular length, shows that the self-assembled monolayers (SAMs) of MOT can be penetrated by aqueous ions to some extent. Furthermore, organic molecular probes, such as dopamine, can sufficiently diffuse into the monolayer because a diffusion-limited current peak is observed when the dopamine oxidation reaction takes place, showing that the monolayer is loosely packed or dominated by defects. But the results of electron transfer to aqueous redox probes (including voltammetry in Fe(CN)(6)(3-/4-) solutions and electrochemical ac impedance spectrum) confirm that the monolayer can passivate the gold electrode surface effectively for its very low ratio of pinhole defects. Moreover, a heterogeneous patching process involving addition of the surfactants into the SAMs provides a mixed or hybrid membrane that has superior passivating properties. These studies show that the MOT monolayer on the electrode can provide an excellent barrier for hydrated ionic probe penetration but cannot resist the organic species penetration effectively. The unusual properties of the SAMs are attributed to the entity of the relatively large thiophene moiety between the carbon chain and the thiol group.