97 resultados para Differential connection

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combining differential confocal microscopy and an annular pupil filter, we obtained the normalized axial intensity distribution curve of an optical system. We used the sharp slopes of the axial response curve of the optical system to measure the surface profile of a reflection grating. Experimental results prove that this method can extend the axial dynamic range and improve the transverse resolution of three-dimensional profilometry by sacrificing axial resolution. (C) 2000 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Static optical transmission is restudied by postulation of the optical path as the proper element in a three-dimensional Riemannian manifold (no torsion); this postulation can be applied to describe the light-medium interactive system. On the basis of the postulation, the behaviors of light transmitting through the medium with refractive index n are investigated, the investigation covering the realms of both geometrical optics and wave optics. The wave equation of light in static transmission is studied modally, the postulation being employed to derive the exact form of the optical field equation in a medium (in which the light is viewed as a single-component field). Correspondingly, the relationships concerning the conservation of optical fluid and the dynamic properties are given, and some simple applications of the theories mentioned are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By generalization of the methods presented in Part I of the study [J. Opt. Soc. Am. A 12, 600 (1994)] to the four-dimensional (4D) Riemannian manifold case, the time-dependent behavior of light transmitting in a medium is investigated theoretically by the geodesic equation and curvature in a 4D manifold. In addition, the field equation is restudied, and the 4D conserved current of the optical fluid and its conservation equation are derived and applied to deduce the time-dependent general refractive index. On this basis the forces acting on the fluid are dynamically analyzed and the self-consistency analysis is given.