6 resultados para Diesel engine performance

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present work focused on improving the engine performance with different fuel equivalence ratios and fuel injections. A scramjet model with strut/cavity integrated configurations was tested under Mach 5.8 flows. The results showed that the strut may sreve as an effective tool in a kerosene-fueled scramjet. The integration of strut/cavities also had great effect on stablizing the combustion in a wide range of fuel equivalence ratio. The one-sdimensional analysis method was used to analyze the main characteristics of the model. The two-stage fuel injection should have better performance in increasing the chemical reaction rate in the first cavity region.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Catalytic activity of Pt catalysts for soot oxidation was studied using temperature programmed reactions. The activity of Pt loaded over TiO2-SiO2 (Pt/TiO2-SiO2) showed higher activity than other Pt/MOx systems (MOx = TiO2, ZrO2, SiO2, Al2O3. TiO2-ZrO2. TiO2-Al2O3, ZrO2-SiO2, ZrO2-Al2O3, SiO2-Al2O3). The activity was highest when the molar ratio of TiO2/(TiO2 + SiO2) ranged from 0.4 to 0.7. The effect of pretreatment with a gas containing low SO2 concentrations on the activity was compared for Pt/SiO2, Pt/TiO2 and Pt/TiO2-SiO2. In the case of Pt/TiO2-SiO2, the activity was markedly promoted by the pretreatment whereas no variation in the activity was observed for Pt/SiO2. The difference in the behavior towards the SO, pretreatment was attributed to property difference in the supports for sulfate accumulation. The high activity of Pt/TiO2-SiO2 was also confirmed under practical conditions with a diesel engine exhaust using a catalyst-supported diesel particulate filter (DPF). (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Premixed combustion of hydrogen gas and air was performed in a stainless steel based micro-annular combustor for a micro-gas turbine system. Micro-scale combustion has proved to be stable in the micro-combustor with a gap of 2 mm. The operating range of the micro-combustor was measured, and the maximum excess air ratio is up to 4.5. The distribution of the outer wall temperature and the temperature of exhaust gas of the micro-conbustor with excess air ratio were obtained, and the wall temperature of the micro-combustor reaches its maximum value at the excess air ratio of 0.9 instead of 1 (stoichiometric ratio). The heat loss of the micro-combustor to the environment was calculated and even exceeds 70% of the total thermal power computed from the consumed hydrogen mass flow rate. Moreover, radiant hunt transfer covers a large fraction of the total heat loss. Measures used to reduce the heat loss were proposed to improve the thermal performance of the micro-combustor. The optimal operating status of the micro-combustor and micro-gas turbine is analyzed and proposed by analyzing the relationship of the temperature of the exhaust gas of the micro-combustor with thermal power and excess air ratio. The investigation of the thermal performance of the micro-combustor is helpful to design an improved microcombustor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently a new method for simulating the thermal loading on pistons of diesel engines was reported. The spatially shaped high power laser is employed as the heat source, and some preliminary experimental and numerical work was carried out. In this paper, a further effort was made to extend this simulation method to some other important engine parts such as cylinder heads. The incident Gaussian beam was transformed into concentric multi-circular patterns of specific intensity distributions, with the aid of diffractive optical elements (DOEs). By incorporating the appropriate repetitive laser pulses, the designed transient temperature fields and thermal loadings in the engine parts could be simulated. Thermal-structural numerical models for pistons and cylinder heads were built to predict the transient temperature and thermal stress. The models were also employed to find the optimal intensity distributions of the transformed laser beam that could produce the target transient temperature fields. Comparison of experimental and numerical results demonstrated that this systematic approach is effective in simulating the thermal loading on the engine parts. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrogen peroxide (H2O2)/kerosene is a prospective bipropellant due to its high-energy content, high storage density, and environmentally benign properties. The possibility of making it hypergolic renders this option even more attracting. Self-ignitable H2O2/kerosene bipropellants were prepared by combining different candidate catalysts and promoters. Preliminary screening evaluations were conducted by using a dropping-test method. Propulsive performances of the combinations having passed satisfying dropping-test requirements were then investigated on a specially designed thrust engine. The results revealed that short ignition delay and reliable propulsion performances could be acquired in both steady-state and pulse-mode operations, and the combination of kerosene with additives and H2O2 of 90% concentration could still have good performances after 3 months storage time. It is expected that the combination of H2O2 and kerosene can be an efficacious alternative for storable toxic propellants used currently.