21 resultados para Decomposition Analysis

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we attempt to characterize protein evolution by residue features which dominate residue substitution in homologous proteins. Evolutionary information contained in residue substitution matrix is abstracted with the method of eigenvalue decomposition. Top eigenvectors in the eigenvalue spectrums are analyzed as function of the level of similarity, i.e. sequence identity (SI) between homologous proteins. It is found that hydrophobicity and volume are two significant residue features conserved in protein evolution. There is a transition point at SI approximate to 45%. Residue hydrophobicity is a feature governing residue substitution as SI >= 45%. Whereas below this SI level, residue volume is a dominant feature. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Eastern Himalayan Syntaxis (EHS) and its surroundings (eastern margin of Tibet) is one of the most complicated tectonic areas in the world. As the exhaust opening of the balanced materials of the Tibetan Plateau during the collision of Indan and Eurasian plates, the deep structure beneath EHS surrounding region is referred to as the key to the study of the dynamics of the plateau. EHS3D project, sponsored by NSFC, has been proposed to explore the deep electric features of the area. During the first stage of EHS3D(2006-2008), MT+LMT measurements have been conducted along two lines from Chayu to Qingshuihe (EHS3D-3) and Chayu to Ruoergai (EHS3D-2). This paper will discuss the MT models of EHS3D-3 line. By the data procrssing, including distortion analysis, Robust estimation and strike decomposition, rotated apparent resitivities and phases have been obtained for each station. Then conventional 2-D inversion algorithms (NLCG and RRI) were employed to produce 2-D models. The final preferred 2-D model suggests that the upper crust consists of resistive blocks while in mid-lower crust there are two extensive conductive bodies beneath Lhasa block and Qiangtang terrain respectively. Jinshajiang suture is a gradient belt and Bangong-Nujiang suture appear a conductive belt dipping to the north. . We concluded that the formation of the two conductive bodies attributed to the partial melt and fluids in the lower crust. The regional electric strike derived from decomposition analysis indicates that the crust and upper mantle move in different manners. The upper crust moves like slips of rigid blocks along major slip faults while the lower crust creeps as a flow in the conductive channels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As the largest and highest plateau on the Earth, the Tibetan Plateau has been a key location for understanding the processes of mountain building and plateau formation during India-Asia continent-continent collision. As the front-end of the collision, the geological structure of eastern Tibetan Plateau is very complex. It is ideal as a natural laboratory for investigating the formation and evolution of the Tibetan Plateau. Institute of Geophysics, Chinese Academy of Sciences (CAS) carried out MT survey from XiaZayii to Qingshuihe in the east part of the plateau in 1998. After error analysis and distortion analysis, the Non-linear Conjugate Gradient inversion(NLCG), Rapid Relaxation Inversin (RRI) and 2D OCCAM Inversion algorithms were used to invert the data. The three models obtained from 3 algorithms provided similar electrical structure and the NLCG model fit the observed data better than the other two models. According to the analysis of skin depth, the exploration depth of MT in Tibet is much more shallow than in stable continent. For example, the Schmucker depth at period 100s is less than 50km in Tibet, but more than 100km in Canadian Shield. There is a high conductivity layer at the depth of several kilometers beneath middle Qiangtang terrane, and almost 30 kilometers beneath northern Qiangtang terrane. The sensitivity analysis of the data predicates that the depth and resistivity of the crustal high conductivity layer are reliable. The MT results provide a high conductivity layer at 20~40km depth, where the seismic data show a low velocity zone. The experiments show that the rock will dehydrate and partially melt in the relative temperature and pressure. Fluids originated from dehydration and partial melting will seriously change rheological characteristics of rock. Therefore, This layer with low velocity and high conductivity layer in the crust is a weak layer. There is a low velocity path at the depth of 90-110 km beneath southeastern Tibetan Plateau and adjacent areas from seismology results. The analysis on the temperature and rheological property of the lithosphere show that the low velocity path is also weak. GPS measurements and the numerical simulation of the crust-mantle deformation show that the movement rate is different for different terranes. The regional strike derived from decomposition analysis for different frequency band and seismic anisotropy indicate that the crust and upper mantle move separately instead of as a whole. There are material flow in the eastern and southeastern Tibetan Plateau. Therefore, the faults, the crustal and upper mantle weak layers are three different boundaries for relatively movement. Those results support the "two layer wedge plates" geodynamic model on Tibetan formation and evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high Reynolds number flow contains a wide range of length and time scales, and the flow domain can be divided into several sub-domains with different characteristic scales. In some sub-domains, the viscosity dissipation scale can only be considered in a certain direction; in some sub-domains, the viscosity dissipation scales need to be considered in all directions; in some sub-domains, the viscosity dissipation scales are unnecessary to be considered at all. For laminar boundary layer region, the characteristic length scales in the streamwise and normal directions are L and L Re-1/ 2 , respectively. The characteristic length scale and the velocity scale in the outer region of the boundary layer are L and U, respectively. In the neighborhood region of the separated point, the length scale l<Analysis shows that the basic conservative equations for discrete cells are the Euler equations, NS- and diffusion parabolized (DP) NS equations. In this paper, a new multiscale-domain decomposition method is developed for the high Reynolds number flow. First, the whole domain is decomposed to different sub-domains with the different characteristic scales. Then the different dominant equation of all sub-domains is defined according to the diffusion parabolized (DP) theory of viscous flow. Finally these different equations are solved simultaneously in whole computational region. For numerical tests of high Reynolds numerical flows, two-dimensional supersonic flows over rearward and frontward steps as well as an interaction flow between shock wave and boundary layer were solved numerically. The pressure distributions and local coefficients of skin friction on the wall are given. The numerical results obtained by the multiscale-domain decomposition algorithm are well agreement with those by NS equations. Comparing with the usual method of solving the Navier-Stokes equations in the whole flow, under the same numerical accuracy, the present multiscale domain decomposition method decreases CPU consuming about 20% and reflects the physical mechanism of practical flow more accurately.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A quasi-thermodynamic model of metalorganic vapor phase epitaxy (MOVPE) growth of GaxAlyIn1-x-yN alloys has been proposed. In view of the complex growth behavior of GaxAlyIn1-x-yN, we focus our attention on the galliumrich quaternary alloys that are lattice matched to GaN, In0.15Ga0.85N or Al0.15Ga0.85N, which are widely used in the GaN-based optoelectronic devices. The relationship between GaAlInN alloy composition and input molar ratio of group III metalorganic compounds at various growth conditions has been calculated. The influence of growth temperature, nitrogen fraction in the carrier gas, input partial pressure of group III metalorganics, reactor pressure, V/III ratio and the decomposition rate of ammonia on the composition of deposited alloys are studied systematically. Based on these calculated results, we can find out the appropriate growth conditions for the MOVPE growth of GaxAlyIn1-x-yN alloy lattice matched to GaN, In0.15Ga0.85N or Al0.15Ga0.85N. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A procedure for purifying single-walled carbon nanotubes (SWNTs) synthesized by the catalytic decomposition of hydrocarbons has been developed. Based on the results from SEM observations, EDS analysis and Raman measurements, it was found that amorphous carbon, catalyst particles, vapor-grown carbon nanofibers and multi-walled carbon nanotubes were removed from the ropes of SWNTs without damaging the SWNT bundles, and a 40% yield of the SWNTs with a purity of about 95% was achieved after purification. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An improved axisymmetric mathematic modeling is proposed for the process of hydrate dissociation by depressurization around vertical well. To reckon in the effect of latent heat of gas hydrate at the decomposition front, the energy balance equation is employed. The semi-analytic solutions for temperature and pressure fields are obtained by using Boltzmann-transformation. The location of decomposition front is determined by solving initial value problem for system of ordinary differential equations. The distributions of pressure and temperature along horizontal radiate in the reservoir are calculated. The numeric results indicate that the moving speed of decomposition front is sensitively dependent on the well pressure and the sediment permeability. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low temperature heat capacities of N-(p-methylphenyl)-N'-(2-pyridyl)urea were determined by adiabatic calorimetry method in the temperature range from 80 to 370 K. It was found that there was not any heat anomaly in this temperature region. Based on the experimental data, some thermodynamic function results were obtained. Thermal stability and decomposition characteristics analysis of N-(p-methylphenyl)-N'-(2-pyridyl)urea were carried out by DSC and TG. The results indicated that N-(p-methylphenyl)-N'-(2-pyridyl)urea started to melt at ca. 426 K (153degreesC) and the melting peak located at 447.01 K (173.86degreesC). The melting enthalpy was 204.445 kJ mol(-1) (899.6 J g(-1)). The decomposition peak of N-(p-methylphenyl)-N'-(2-pyridyl)urea was found at 499.26 K (226.11degreesC) from DSC curve. This result was similar with that from TG and DTG experiment, in which the mass loss peak was determined as 500.4 K (227.2degreesC).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As one primary component of Vitamin B-3, nicotinic acid [pyridine 3-carboxylic acid] was synthesized, and calorimetric study and thermal analysis for this compound were performed. The low-temperature heat capacity of nicotinic acid was measured with a precise automated adiabatic calorimeter over the temperature rang from 79 to 368 K. No thermal anomaly or phase transition was observed in this temperature range. A solid-to-solid transition at T-trs = 451.4 K, a solid-to-liquid transition at T-fus = 509.1 K and a thermal decomposition at T-d = 538.8 K were found through the DSC and TG-DTG techniques. The molar enthalpies of these transitions were determined to be Delta(trs)H(m =) 0.81 kJ mol(-1), Delta(fus)H(m) 27.57 kJ mol(-1) and Delta(d)H(m) = 62.38 kJ mol(-1), respectively, by the integrals of the peak areas of the DSC curves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The heat capacities of berberine sulphate [(C20H18NO4)(2)SO4.3H(2)O] were measured from 80 to 390 K by means of an automated adiabatic calorimeter. Smoothed heat capacities,{H-T-H-298.15} and {S-T-S-298.15} were calculated. The loss of crystalline water started at about 339.3+/-0.2 K, and its peak temperature was 365.8+/-0.6 K. The peak temperature of decomposition for berberine sulphate was at about 391.4+/-0.4 K by DSC curve. TG-DTG analysis of this material was carried out in temperature range from 310 to 970 K. TG and DSC curves show that there is no melting in the whole heating process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Active site structure for NO decomposition carried out on perovskite-like oxides were discussed based on the N-2 yield measured from LaSrNi1-x,AlxO4 with different B-site cations and from La2-ySryCuO4 with different crystal phases. Results show that the active site contains two oxygen vacancies, two transition metals, and one lattice-oxygen, with the oxygen vacancy locating on the apex of MO6 octahedron, and the lattice oxygen locating between the two transition metals (i.e., M-O-M plane). Density functional theory (DFT) analysis to the structure shows that this new active site is the most active structure for NO adsorbing, and hence, for NO decomposition. The similar trend of the relative energies that are required for the formation of oxygen vacancies with f form (calculated from DFT), the amount of oxygen vacancies, and the activities (N-2 yield) certifies this result further.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structures and crystal form transition of the novel aryl ether ketone polymer containing meta-phenylene linkage: PEKEKK(T/I) were investigated by wide angle X-ray diffraction (WAXD), imaging plates (IPs) and small angle X-ray scattering (SAXS). The energy of activation of the decomposition reaction and degree of crystallinity of PEKEKK(T/I) were determined by WAXD and thermo-gravimetric analysis (TGA), respectively. Results obtained from WAXD and IPs show that crystal forms I and II coexist in the PEKEKK(T/I) samples isothermally cold crystallized in the temperature range from 180degreesC to 240degreesC and only form I occurs in PEKEKK(T/I) samples isothermally cold crystallized at 270degreesC. The radius of gyration (Rg), thickness of microregions with electron-density fluctuations (E) and distribution of particle sizes were investigated by SAXS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two systems of mixed oxides, La2-xSrxCuO4 +/- lambda (0.0 less than or equal to x less than or equal to 1.0) and La(2-x)Tn(x)CuO(4 +/-) (lambda) (0.0 less than or equal to x less than or equal to 0.4), with K2NiF4 structure were prepared. The average valence of Cu ions and oxygen nonstoichiometry (lambda) were determined by means of chemical analysis. Meanwhile, the adsorption and activation of nitrogen monoxide (NO) and the mixture of NO + CO over the mixed oxide catalysts were studied by means of mass spectrometry temperature-programmed desorption (MS-TPD). The catalytic behaviors in the reactions of direct decomposition of NO and its reduction by CO were investigated, and were discussed in relation with average valence of Cu ions, A and the activation and adsorption of reactant molecules. It has been proposed that both reactions proceed by the redox mechanism, in which the oxygen vacancies and the lower-valent Cu ions play important roles in the individual step of the redox cycle. Oxygen vacancy is more significant for NO decomposition than for NO + CO reaction. For the NO + CO reaction, the stronger implication of the lower-valent Cu ions or oxygen vacancy depends on reaction temperature and the catalytic systems (Sr- or Th-substituted). (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two systems of La2-xSrxCuO4+/-lambda and La2-xThxCuO4+/-lambda, mixed oxides with K2NiF4 structure were synthesized. The compositions and structures of the catalysts were characterized by means of XRD, XPS, chemical analysis and so on. The catalytic behavior for the direct decomposition of NO has been investigated. The results show that the catalytic activity is closely related to the oxygen vacancy and lower valence metallic ion in the direct decomposition of NO. The presence of oxygen vacancy is necessary for mixed oxide to have steady activity in NO decomposition.