9 resultados para Daddi, Bernardo, fl. 1327-1348.
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
研究了描述逻辑的有穷基问题,分析了有穷基在描述逻辑中的重要意义及其研究现状,并研究了形式概念分析中的属性蕴含和Duguenne-Guigues基问题.利用形式概念分析中Duguenne-Guigues基存在的证明结果,在F.Baader工作基础上设置了描述逻辑的描述背景,重新定义了描述背景下的属性蕴含,证明了带循环术语的描述逻辑系统FLε存在最大不动点语义(greatest fixed-points,gfp)模型,给出了带循环术语的描述逻辑系统FLε在最大不动点模型下的有穷基的存在性定理,并证明有穷基的可靠性和完备性.描述逻辑有穷基可以帮助知识工程师构建一个更适用于推理的描述逻辑知识库.
Detection and Characterization of Long-Pulse Low-Velocity Impact Damage in Plastic Bonded Explosives
Resumo:
Damage not only degrades the mechanical properties of explosives, but also influences the shock sensitivity, combustion and even detonation behavior of explosives. The study of impact damage is crucial in the vulnerability evaluation of explosives. A long-pulse low-velocity gas gun with a gas buffer was developed and used to induce impact damage in a hot pressed plastic bonded explosive. Various methods were used to detect and characterize the impact damage of the explosive. The microstructure was examined by use of polarized light microscopy. Fractal analysis of the micrographs was conducted by use of box counting method. The correlation between the fractal dimensions and microstructures was analyzed. Ultrasonic testing was conducted using a pulse through-transmission method to obtain the ultrasonic velocity and ultrasonic attenuation. Spectra analyses were carried out for recorded ultrasonic signals using fast Fourier transform. The correlations between the impact damage and ultrasonic parameters including ultrasonic velocities and attenuation coefficients were also analyzed. To quantitatively assess the impact induced explosive crystal fractures, particle size distribution analyses of explosive crystals were conducted by using a thorough etching technique, in which the explosives samples were soaked in a solution for enough time that the binder was totally removed. Impact induces a large extent of explosive crystal fractures and a large number of microcracks. The ultrasonic velocity decreases and attenuation coefficients increase with the presence of impact damage. Both ultrasonic parameters and fractal dimension can be used to quantitatively assess the impact damage of plastic bonded explosives.
Resumo:
In this paper, a nano-moiré fringe multiplication method is proposed, which can be used to measure nano-deformation of single crystal materials. The lattice structure of Si (111) is recorded on a film at a given magnification under a transmission microscope, which acts as a specimen grating. A parallel grating (binary type) on glass or film is selected as a reference grating. A multiplied nano-moiré fringe pattern can be reproduced in a 4f optical filter system with the specimen grating and the prepared reference grating. The successful results illustrate that this method can be used to measure deformation in nanometre scale. The method is especially useful in the measurement of the inhomogeneous displacement field, and can be utilized to characterize nano-mechanical behaviour of materials such as dislocation and atomic bond failure.
Resumo:
A new failure mode is observed in circular brass foils induced by laser beam. The new failure is based on the following experimental facts : (1) the peripheries of the circular brass foils are fixed and the surfaces of the foils are radiated by laser beam ; (2) the laser beam used is considered to be non-Gaussian spatially, actually an approximately uniform distribution limited in a certain size spot ; (3) the pulse on time of laser beam should be 250 μs, i.e. so called long duration pulse laser. The failure process consists of three stages ; i.e. thermal bulging, localized shear deformation and perforation by plugging. The word reverse in reverse bulging and plugging mode means that bulging and plugging occur in the direction of incident laser beam. To study the newly-discovered type of failure quantitatively, analytical solutions for the axisymmetric temperature field and deflection curve are derived. The calculated results show that the newly discovered failure mode is attributed to the spatial structure effect of laser beam indeed.
Resumo:
The theory of the loading/unloading response ratio (LURR) was applied to the Jiashi earthquake sequence which occurred at the beginning of 1997 in Xinjiang, and found that, before the earthquakes with relatively high magnitudes In the sequence, the ratio showed anomalies of high values. That is to say, the LURR theory can be applied to the short-term earthquake prediction in some cases, especially in the early period after a strong earthquake, such as the forecasts for some strong earthquakes in the Jiashi sequence.
Resumo:
Polymer bonded explosives (PBXs) are highly particle filled composite materials comprised of explosive crystals and a polymeric binder (ca. 5-10% by weight). The microstructure and mechanical properties of two pressed PBXs with different binder systems were studied in this paper. The initial microstructure of the pressed PBXs and its evolution under different mechanical aggressions were studied, including quasi-static tension and compression, ultrasonic wave stressing and long-pulse low-velocity impact. Real-time microscopic observation of the PBXs under tension was conducted by using a scanning electron microscope equipped with a loading stage. The mechanical properties under tensile creep, quasi-static tension and compression were studied. The Brazilian test, or diametrical compression, was used to study the tensile properties. The influences of pressing pressures and temperatures, and strain rates on the mechanical properties of PBXs were analyzed. The mesoscale damage modes in initial pressed samples and the samples insulted by different mechanical aggressions, and the corresponding failure mechanisms of the PBXs under different loading conditions were analyzed.
Resumo:
The bending behavior and damage characteristics of CALL (Carbon fiber/epoxy/AL Laminate) hybrid composites have been studied by moire interferometry. The shear strain distribution along the cross-section and the forms of damage of bending beams are obtained. The results show that the magnitude of the shear strain in a carbon/epoxy layer is obviously larger than that in a corresponding aluminum layer and the shear strain distribution of a CFRP layer along the cross-section conforms basically to a parabolic distribution curve, as for the shear strain distribution in aluminum layers along the cross-section. Shear damage, either in the interfaces or in carbon-fiber/epoxy laminae, and tensile failure of CFRP laminae in the tension surface represent, respectively, the damage forms of the longitudinal and transverse bending specimen.
Resumo:
The ablation rate of a hydrogen isotopic spherical pellet G(is) due to the impact of energetic ions of the respective isotopes and its scaling law are obtained using the transsonic neutral-shielding model, where subscript s might refer to either hydrogen or deuterium. Numerical results show that if E0s/E0e2 greater-than-or-equal-to 1.5, G(is)/G(es) greater-than-or-equal-to 20%, where E0s and E0e are the energy of undisturbed ion and electron, respectively, and G(es) is the ablation rate of a pellet due to the impact of electrons. Hence, under the NBI heating, the effect of the impact of energetic ions on the pellet ablation should be taken into consideration. This result also gives an explanation of the observed enhancement of pellet ablation during NBIH.
Resumo:
The parameters at the symmetrical axis of a cylindrical plume characterize the strength of this plume and provide a boundary condition which must be given to investigate the structure of a plume. For Newtonian fluid with a temperature-and pressure-dependence viscosity, an asymptotical solution of hydrodynamic equations at the symmetrical axis of the plume is found in the present paper. The temperature, upward velocity and viscosity at the symmetrical axis have been obtained as functions of depth, The calculated results have been given for two typical sets of Newtonian rheological parameters. The results obtained show that the temperature distribution along the symmetrical axis is nearly independent of the theological parameters. The upward velocity at the symmetrical axis, however, is strongly dependent on the rheological parameters.