273 resultados para DOUBLE DISTILLATION

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

As an improvement of resolution of observations, more and more radio galaxies with radiojets have been identified and many fine structures in the radio jets yielded. In the presentpaper, the two-dimensional magnetohydrodynamical theory is applied to the analysis of themagnetic field configurations in the radio jefs. Two-dimensional results not only are con-sistent theoretically, but also explain the fine structures of observations. One of the theo-retical models is discussed in detail, and is in good agreement as compared with the observedradio jets of NGC6251. The results of the present paper also show that the magneticfields in the radio jets are mainly longitudinal ones and associate with the double sources ofQSOs if the magnetic field of the central object is stronger; the fields in the radio jets aremainly transverse ones and associate with the double sources of radio galaxies if the fieldof the central object is weaker. The magnetic field has great influence on the morphol-ogy and dynamic process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two-dimensional accelerating theory about solar wind is applied to the study of theaccelerating process of jet beam in the radio galaxy. The flowing features are given with theanalytic method, and the basic flow is along the direction of the jet beam. The mechanism ofacceleration from subsonic to supersonic flow is discussed. At the same time, some fine struc-tures about the double sources in the radio galaxy are explained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental investigation of Bénard-Marangoni convection has been performed in double immiscible liquid layers of rectangular configuration on the ground. The two kinds of liquid are 10cst silicon oil and FC-70 respectively. The size of rectangular chamber is 100mm×40mm in horizontal cross-section. The evolution processes of convection are observed in the differential thickness ratio of two liquid layers. The critical temperature difference was measured via the detections of fluid convection by a particle image velocimetry (PIV) in the vertical cross-section of the liquid layer. The critical temperature difference or the critical Marangoni number was given. And the influence of the thickness ratio of two liquid layers on the convection instability was discussed. The evolution processes of patterns and temperature distributions on the interface are displayed by using thermal liquid crystal. The velocity distributions on the interface were also obtained. In comparison with the thermocapillary effect, the effect of buoyancy convection will relatively increase when the depth of the liquid layer increases. Because of the coupling of buoyancy and thermocapillary effect, the convection instability is much more complex than that in the microgravity environment. And the critical convection depends on the change of the thickness of liquid layers and also the change of thickness ratio of two liquid layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction effect, i.e., the contribution of each component to the total energy absorption of an axially crushed foam-filled hat section was investigated quantitatively via numerical simulation. The FE results were first verified by experimental work of aluminum foam-filled top-hat and double-hat sections, then the contribution of foam-fillers and that of hat sections to the overall energy absorption were quantitatively obtained, respectively. When foam-filled, increase in energy absorption was found both in hat section component and foam-filler component, whereas the latter contributes predominantly to the interaction effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms of shock focusing in inner cavities of double wedge and cone are compared with that of traditional curved-surface shock focusing. The results show that there are many high temperature regions just behind shock surface which appear in two place alternately, one is near the surface of wall and the other is near the centerline. Also, changes in temperature, pressure, energy and power of the high temperature regions were analyzed and the results show that energy and power per unit volume increase, but total energy and power in the high temperature regions decrease during the process of shock moving forward the apex of double wedge or cone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the first part of direct numerical simulation (DNS) of double-diffusive convection in a slim rectangular enclosure with horizontal temperature and concentration gradients. We consider the case with the thermal Rayleigh number of 10^5, the Pradtle number of 1, the Lewis number of 2, the buoyancy ratio of composition to temperature being in the range of [0,1], and height-to-width aspect ration of 4. A new 7th order upwind compact scheme was developed for approximation of convective terms, and a three-stage third-order Runge-Kutta method was employed for time advancement. Our DNS suggests that with the buoyancy ratio increasing form 0 to 1, the flow of transition is a complex series changing fromthe steady to periodic, chaotic, periodic, quasi-periodic, and finally back to periodic. There are two types of periodic flow, one is simple periodic flow with single fundamental frequency (FF), and another is complex periodic flow with multiple FFs. This process is illustrated by using time-velocity histories, Fourier frequency spectrum analysis and the phase-space rajectories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical 2D method for simulation of two-phase flows including phase change under microgravity conditions is presented in this paper, with a level set method being coupled with the moving mesh method in the double-staggered grid systems. When the grid lines bend very much in a curvilinear grid, great errors may be generated by using the collocated grid or the staggered grid. So the double-staggered grid was adopted in this paper. The level set method is used to track the liquid-vapor interface. The numerical analysis is fulfilled by solving the Navier-Stokes equations using the SIMPLER method, and the surface tension force is modeled by a continuum surface force approximation. A comparison of the numerical results obtained with different numerical strategies shows that the double-staggered grid moving-mesh method presented in this paper is more accurate than that used previously in the collocated grid system. Based on the method presented in this paper, the condensation of a single bubble in the cold water under different level of gravity is simulated. The results show that the condensation process under the normal gravity condition is different from the condensation process under microgravity conditions. The whole condensation time is much longer under the normal gravity than under the microgravity conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi-track laser cladding is now applied commercially in a range of industries such as automotive, mining and aerospace due to its diversified potential for material processing. The knowledge of temperature, velocity and composition distribution history is essential for a better understanding of the process and subsequent microstructure evolution and properties. Numerical simulation not only helps to understand the complex physical phenomena and underlying principles involved in this process, but it can also be used in the process prediction and system control. The double-track coaxial laser cladding with H13 tool steel powder injection is simulated using a comprehensive three-dimensional model, based on the mass, momentum, energy conservation and solute transport equation. Some important physical phenomena, such as heat transfer, phase changes, mass addition and fluid flow, are taken into account in the calculation. The physical properties for a mixture of solid and liquid phase are defined by treating it as a continuum media. The velocity of the laser beam during the transition between two tracks is considered. The evolution of temperature and composition of different monitoring locations is simulated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the enhancement of Kerr nonlinearity in an asymmetric GaAs double quantum well via Fano interference, which is caused by tunneling from the excited subband to the continuum. In our structure, owing to Fano interference, the Kerr nonlinearity can be enhanced by appropriately choosing the values of the detunings and the intensity of the pump field, while cancel the linear and nonlinear absorptions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A five-level tripod scheme is proposed for obtaining a high efficiency four-wave-mixing (FWM) process. The existence of double-dark resonances leads to a strong modification of the absorption and dispersion properties against a pump wave at two transparency windows. We show that both of them can be used to open the four-wave mixing channel and produce efficient mixing waves. In particular, higher FWM efficiency is always produced at the transparent window corresponding to the relatively weak-coupling field. By manipulating the intensity of the two coupling fields, the conversion efficiency of FWM can be controlled.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose an atom localization scheme for a tripod-type atom making use of the sharp absorption peak resulting from interacting double-dark resonances. It is demonstrated that the probability of finding the atom at a particular position, as well as the localization precision, can be dramatically enhanced. The probability can be doubled by adjusting the Rabi frequency of the control field to the maximum Rabi frequency of the standing-wave field. Moreover, much better spatial resolution can be achieved for smaller detunings of the control and the standing-wave fields. (c) 2006 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the optical transmission properties of a combined system which consists of two quantum-dot-nanocavity subsystems indirectly coupled to a waveguide in a planar photonic crystal. A Mollow-like triplet and the growth of sidebands are found, reflecting intrinsic optical responses in the complex microstructure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the influence of the orbital symmetry and the molecular alignment with respect to the laser-field polarization on laser-induced nonsequential double ionization of diatomic molecules, in the length and velocity gauges. We work within the strong-field approximation and assume that the second electron is dislodged by electron-impact ionization, and also consider the classical limit of this model. We show that the electron-momentum distributions exhibit interference maxima and minima due to electron emission at spatially separated centers. The interference patterns survive integration over the transverse momenta for a small range of alignment angles, and are sharpest for parallel-aligned molecules. Due to the contributions of the transverse-momentum components, these patterns become less defined as the alignment angle increases, until they disappear for perpendicular alignment. This behavior influences the shapes and the peaks of the electron-momentum distributions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a mixed entanglement distillation protocol by means of the parity measurement of qubits. Without the use of controlled-NOT (CNOT) operations, the efficiency of our protocol can approach that of the CNOT protocol. In comparison, the total successful probability of our protocol can reach a quantity twice as large as that of the linear optics-based protocol.