79 resultados para DIRECT-INJECTION
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A wall-jet cell/carbon fibre microelectrode detector was designed and used for the micellar liquid chromatographic assay of acetaminophen. The separations were carried out in an analytical column packed with C-18 stationary phase and the mobile phase was
Resumo:
Direct-injection electrospray ionization mass spectrometry in combination with information-dependent data acquisition (IDA), using a triple-quadrupole/linear ion trap combination, allows high-throughput qualitative analysis of complex phospholipid species from child whole blood. In the IDA experiments, scans to detect specific head groups (precursor ion or neutral loss scans) were used as survey scans to detect phospholipid classes. An enhanced resolution scan was then used to confirm the mass assignments, and the enhanced product ion scan was implemented as a dependent scan to determine the composition of each phospholipid class. These survey and dependent scans were performed sequentially and repeated for the entire duration of analysis, thus providing the maximum information from a single injection. In this way, 50 different phospholipids belonging to the phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidylcholine and sphingomyelin classes were identified in child whole blood. Copyright (C) 2005 John Wiley & Sons, Ltd.
Resumo:
A coupled-column liquid chromatographic method for the direct analysis of 14 urinary nucleosides is described. Efficient on-line clean-up and concentration of 14 nucleosides from urine samples were obtained by using a boronic acid-substituted silica column (40 turn x 4.0 mm I.D.) as the first column (Col-1) and a Hypersil ODS2 column (250 mm x 4.6 mm I.D.) as the second column (Col-2). The mobile phases applied consisted of 0.25 mol/L ammonium acetate (pH 8.5) on Col-1, and of 25 mmol/L potassium dihydrogen phosphate (pH 4.5) on Col-2, respectively. Determination of urinary nucleosides was performed on Col-2 column by using a linear gradient elution comprising 25 mmol/L potassium dihydrogen phosphate (pH 4.5) and methanol-water (60:40, v/v) with UV detection at 260 nm. Urinary nucleosides analysis can be carried out by this procedure in 50 min requiring only pH adjustment and the protein precipitation by centrifugation of urine samples. Calibration plots of 14 standard nucleosides showed excellent linearity (r > 0.995) and the limits of detection were at micromolar levels. Both of intra- and inter-day precisions of the method were better than 6.6% for direct determination of 14 nucleosides. The validated method was applied to quantify 14 nucleosides in 20 normal urines to establish reference ranges. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The giant panda skeletal muscle cells, uterus epithelial cells and mammary gland cells from an adult individual were cultured and used as nucleus donor for the construction of interspecies embryos by transferring them into enucleated rabbit eggs. All the three kinds of somatic cells were able to reprogram in rabbit ooplasm and support early embryo development, of which mammary gland cells were proven to be the Lest, followed by uterus epithelial cells and skeletal muscle cells. The experiments showed that direct injection of mammary gland cell into enucleated rabbit ooplasm, combined with in vivo development in ligated rabbit oviduct, achieved higher blastocyst development than in vitro culture after the somatic cell was injected into the perivitelline space and fused with the enucleated egg by electrical stimulation. The chromosome analysis demonstrated that the genetic materials in reconstructed blastocyst cells were the same as that in panda somatic cells. In addition, giant panda mitochondrial DNA (mtDNA) was shown to exist in the interspecies reconstructed blastocyst. The data suggest that (i) the ability of ooplasm to dedifferentiate somatic cells is not species-specific; (ii) there is compatibility between interspecies somatic nucleus and ooplasm during early development of the reconstructed egg.
Resumo:
This paper reports an analytical method for separating, identifying, and quantifying sulfur-containing compounds in crude oil fraction (IBP-360degreesC) samples based on comprehensive two-dimensional gas chromatography coupled with a sulfur chemiluminescence detector. Various sulfur-containing compounds and their groups were analyzed with one direct injection. 3620 peaks were detected including 1722 thiols/thioethers/ disulfides/1-ring thiophenes, 953 benzothiophenes, 704 dibenzothiophenes, and 241 benzonaphthothiophenes. The target sulfur compounds and their groups were identified based on the group separation feature and structured retention of comprehensive two-dimensional gas chromatography as well as standard substances. The quantitative analysis of major sulfur-containing compounds and total sulfur was based on the linear response of the sulfur chemiluminescence detector using the internal standard method. The sulfur contents of target sulfur compounds and their groups in 4 crude oil fractions were also determined. The recoveries for standard sulfur-containing compounds were in the range of 90-102%. The quantitative result of total sulfur in the Oman crude oil fraction sample was compared with those from ASTM D 4294 standard method (total S by X-ray fluorescence spectrometry), the relative deviation (RD%) was 4.2% and the precision of the method satisfactory.
Resumo:
A new method for the sensitive determination of amino acids and peptides using the tagging reagent 2-(9-carbazole)-ethyl chloroformate (CEOC) with fluorescence (FL) detection has been developed. Identification of derivatives was carried out by liquid chromotography mass spectrometry. The chromophore in the 2-(9-fluorenyl)-ethyl chloroformate (FMOC) reagent was replaced by carbazole, which resulted in a sensitive fluorescence lerivatizing agent CEOC. CEOC can easily and quickly label peptides and amino acids. Derivatives are stable enough to be efficiently analyzed by high-performance liquid chromatography. Studies on derivatization demonstrate excellent derivative yields over the pH range 8.8-10.0. Maximal yields close to 100% are observed with three- to fourfold molar reagent excess. Derivatives exhibit strong fluorescence and allow direct injection of the reaction mixture with no significant disturbance from the major fluorescent reagent degradation by-products, such as 2(9-carbazole)-ethanol and bis-(2-(9-carbazole)-ethyl) carbonate. In addition, the detection responses for CEOC derivatives are compared to those obtained with FMOC. The ratios AC(CEOC)/AC(FMOC) = 1.00-1.82 for fluorescence (FL) response and AC'(CEOC)/AC'(FMOC) = 1.00-1.21 for ultraviolet (UV) response are observed (here, AC and AC' are, respectively, FL and UV F response). Separation of the derivatized peptides and amino acids has been optimized on a Hypersil BDS C18 column. Excellent linear responses are observed. This method was used successfully to analyze protein hydrolysates from wool and from direct-derivatized beer. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
Recent important applications of inductively coupled plasma mass spectrometry in biological samples analysis are reviewed. The sample preparation, sample introduction techniques, interference correction and typical applications are introduced in detail with 154 references.
Resumo:
A pre-column derivatization method for the sensitive determination of amino acids and peptides using the tagging reagent 1,2-benzo-3,4dihydrocarbazole-9-ethyl chloroformate (BCEOC) followed by high-performance liquid chromatography with fluorescence detection has been developed. Identification of derivatives was carried out by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS/MS). The chromophore of 2-(9-carbazole)-ethyl chloroformate (CEOC) reagent was replaced by 1,2-benzo-3,4-dihydrocarbazole functional group, which resulted in a sensitive fluorescence derivatizing reagent BCEOC. BCEOC can easily and quickly label peptides and amino acids. Derivatives are stable enough to be efficiently analyzed by high-performance liquid chromatography. The derivatives showed an intense protonated molecular ion corresponding m/z (M + H)(+) under electrospray ionization (ESI) positive-ion mode with an exception being Tyr detected at negative mode. The collision-induced dissociation of protonated molecular ion formed a product at m/z 246.2 corresponding to the cleavage of C-O bond of BCEOC molecule. Studies on derivatization demonstrate excellent derivative yields over the pH 9.0-10.0. Maximal yields close to 100% are observed with a 3-4-fold molar reagent excess. Derivatives exhibit strong fluorescence and extracted detzvatization solution with n-hexane/ethyl acetate (10:1, v/v) allows for the direct injection with no significant interference from the major fluorescent reagent degradation by-products, such as 1,2-benzo-3,4-dihydrocarbazole-9-ethanol (BDC-OH) (a major by-product), mono- 1,2-benzo-3,4-dihydrocarbazole-9-ethyl carbonate (BCEOC-OH) and bis-(1,2-benzo-3,4-dihydrocarbazole-9-ethyl) carbonate (BCEOC)(2). In addition, the detection responses for BCEOC derivatives are compared to those obtained with previously synthesized 2-(9-carbazole)-ethyl chloroformate (CEOC) in our laboratory. The ratios AC(BCEOC)/AC(CEOC) = 2.05-6.51 for fluorescence responses are observed (here, AC is relative fluorescence response). Separation of the derivatized peptides and amino acids had been optimized on Hypersil BDS C-18 column. Detection limits were calculated from 1.0 pmol injection at a signal-to-noise ratio of 3, and were 6.3 (Lys)-177.6 (His) fmol. The mean interday accuracy ranged from 92 to 106% for fluorescence detection with mean %CV < 7.5. The mean interday precision for all standards was < 10% of the expected concentration. Excellent linear responses were observed with coefficients of > 0.9999. Good compositional data could be obtained from the analysis of derivatized protein hydrolysates containing as little as 50.5 ng of sample. Therefore, the facile BCEOC derivatization coupled with mass spectrometry allowed the development of a highly sensitive and specific method for the quantitative analysis of trace levels of amino acids and peptides from biological and natural environmental samples. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
To meet the requirements of providing high-intensity heavy ion beams the direct plasma injection scheme (DPIS) was proposed by a RIKEN-CNS-TIT collaboration. In this scheme a radio frequency quadrupole (RFQ) was joined directly with the laser ion source (LIS) without a low-energy beam transport (LEBT) line. To find the best design of the RFQ that will have short length, high transmission efficiency and small emittance growth, beam dynamics designs with equipartitioning design strategy and with matched-only design strategy have been performed, and a comparison of their results has also been done. Impacts of the input beam parameters on transmission efficiency are presented, too. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In a laser ion source, plasma drift distance is one of the most important design parameters. Ion current density and beam pulse width are defined by plasma drift distance between a laser target and beam extraction position. In direct plasma injection scheme, which uses a laser ion source and a radio frequency quadrupole linac, we can apply relatively higher electric field at beam extraction due to the unique shape of a positively biased electrode. However, when we aim at very high current acceleration such as several tens of milliamperes, we observed mismatched beam extraction conditions. We tested three different ion current at ion extraction region by changing plasma drift distance to study better extraction condition. In this experiment, C6+ beam was accelerated. We confirmed that matching condition can be improved by controlling plasma drift distance.
Resumo:
Variations in optical spectrum and modulation band-width of a modulated Fabry-Perot (FP) semiconductor laser subject to the external light injection from another FP Laser is investigated in this paper. Optimal wavelength matching conditions for two FP lasers are discussed. A series of experiments show that two FP lasers should have a central wavelength overlapping and a mode spacing difference of several gigahertz. Under these conditions both the magnitude and phase frequency responses can be improved significantly.
Resumo:
We developed an electrochemical detector on a hybrid chip for the determination of glucose in human plasma. The microchip system described in this paper consists of a poly(dimethylsiloxane) (PDMS) layer containing separation and injection channels and an electrode plate. The copper microelectrode is fabricated by selective electroless deposition. The fabrication of the decoupler is performed by platinum electrochemical deposition on the metal film formed by electroless deposition. Factors influencing the performance, including detection potential, separation field strength, and buffer concentration, were studied. The electrodes exhibited good stability and durability in the analytical procedures. Under optimized detection conditions, glucose responded linearly from 10 muM to 1 mM. Finally, glucose in human plasma from three healthy individuals and two diabetics was successfully determined, giving a good prospect for a new clinical diagnostic instrument.
Resumo:
Capillary electrophoresis (CE) with tris(2,2'-bipyridyl) ruthenium (II) (Ru(bpy)(3)(2+)) electrochemiluminescence (ECL) detection technique was developed for the analysis of four polyamines (putrescine (Put), cadaverine (Cad), spermidine (Spd), and spermine (Spm)) analysis. The four polyamines contain different amine groups, which have different ECL activity. There are several parameters which influence the resolution and ECL peak intensities, including the buffer pH and concentrations, separation voltage, sample injection, electrode materials, and Ru(bpy)(3)(2+) concentrations. Polyamines are separated by capillary zone electrophoresis in an uncoated fused-silica capillary (50 cm x 25 mum (ID) filled with acidic phosphate buffer (200 mmol/L phosphate, pH 2.0) - 1 mol/L phosphoric acid (9:1 v/v) and a separation voltage of 5 kV (25 muA), with end-column Ru(bpy)(3)(2+) ECL detection. A 5 mmol/L Ru(bpy)(3)(2+) solution plus 200 mmol/L phosphate buffer (pH 11.0) is added into the reagent reservoir. The calibration curve is linear over a concentration range of two or three orders of magnitude for the polyamines. The analysis time is less than 25 min. Detection limits for Put and Cad are 1.9 x 10(-7) mol/L and 7.6 x 10(-9) mol/L for Spd and Spm, respectively.
Resumo:
Direct electrochemistry of hemoglobin was observed in stable thin film composed of a natural lipid (egg-phosphatidylcholine) and hemoglobin on pyrolytic graphite (PG) electrode. Hemoglobin in lipid films shows thin layer electrochemistry behavior. The formal potential Edegrees' of hemoglobin in the lipid film was linearly varied with pH in the range from 3.5 to 7.0 with a slope of -46.4 mV pH(-1) Hemoglobin in the lipid film exhibited elegant catalytic activity for electrochemical reduction of H202, based which a unmediated biosensor for H2O2 was developed.
Resumo:
Electrodeposition of the phenothiazine mediator titrant toluidine blue onto a glassy carbon substrate at an appropriate potential was used to construct a toluidine blue chemically modified electrode (CME) exhibiting electrocatalytic reduction for myoglobin and hemoglobin. The CME catalyzed the hemoprotein electroreduction at the reduction potential of the mediator molecule. When the CME as used as a detector for flow injection analysis at a constant applied potential of -0.30 V vs. a saturated calomel electrode, it gave detection limits of 20 and 50 ng (1.2 and 0.78 pmol) injected myoglobin and hemoglobin, respectively, with a dynamic linear concentration range over 2 orders of magnitude. After a brief equilibration period, the CME retained nearly 90% of its initial myoglobin response over 8 hours of continuous exposure to the flow-through system.