8 resultados para DEFORESTATION
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The Critically Endangered black crested gibbon Nomascus concolor of China, Laos and Vietnam is threatened by deforestation and habitat destruction but there have been no studies of how it uses its forest habitat, probably because of the typically rugged t
Resumo:
由于人类活动所引起的地球大气层中温室气体的富集已导致全球地表平均温度在20世纪升高了0.6 ℃,并预测在本世纪将上升1.4-5.8 ℃。气候变暖对陆地植物和生态系统影响深远,并已成为全球变化研究的重要议题。高海拔、高纬度地带的生态系统对气候变化最敏感。而在高原和高山极端环境影响下所形成的高寒草甸生态系统极其脆弱,对由于温室效应引起的全球气候变化极其敏感,对这些变化的响应更具有超前性。 本研究以川西北高寒草甸植物群落及几种主要物种为研究对象,采用国际山地综合研究中心(ITEX)普遍所采用的增温方法-----开顶式生长室(OTC)模拟气候变暖来研究增温对高寒草甸植物群落结构、物质分配及其主要物种生长和生理的影响,以探讨高寒草甸植物响应与适应气候变暖的生物学和生态学机制。主要研究结论如下: 1、OTC的增温效果 由于地温、地表温度和气温的平均值在OTC内分别高出对照样地0.28℃、0.46℃和1.4℃,这说明本研究所采用的开顶式生长室(OTC)起到了增温的作用;同时,由于温室内与温室外接受的降水量相同,温室内由于热量条件的改善,土壤蒸发和植被的蒸腾作用增强,直接导致了OTC内土壤表层相对湿度的减少。 2、群落结构对增温的响应 由于增温时间较短,增温内外样地的物种组成并未发生改变;但增温后一定程度上改变了植物群落的小气候环境,从而导致物种间的竞争关系被破坏,种间竞争关系的破坏引起群落优势种组成发生相应的改变,在对照样地,鹅绒委陵菜、甘青老鹳草、遏蓝菜和蚤缀是占绝对优势的物种,而在OTC内,小米草、尼泊尔酸模、垂穗披碱草、发草和羊茅的重要性显著增加。 禾草和杂草由于对增温的生物学特性及其资源利用响应的不同,加之增温造成土壤含水量下降等环境因子的改变。与对照样地相比较,OTC内禾草的盖度及生物量都显著增加,而杂草的盖度和生物量则显著下降。 3、植物生长期对增温的响应 OTC内立枯和调落物的生物量在生长季末(10月份)都要小于对照样地的立枯和调落物生物量,而OTC内的地上鲜体生物量在10月份却略高于对照样地。这说明OTC内植物的衰老或死亡得以延缓,而植物的生长期得以延长。 4、群落生物量及分配对增温的响应 OTC内的地上鲜体生物量(10月份除外)和地下0-30cm的根系生物量与对照样地相比较,都出现了不同程度的减少;土壤根系的分配格局也发生了明显的改变,其中,OTC内0-10cm土层的生物量分配比例增加,而20-30cm土层生物量分配比例的减少。 5、群落碳、氮对增温的响应 增温后,OTC内植物群落地上活体和地下活根的碳浓度不同程度的高于对照样地,植物群落的碳库在OTC内也略高于对照样地;而OTC内植物群落地上活体和地下活根的氮浓度不同程度的低于对照样地,其植物群落的氮库与对照样地相比也略有下降。 6、几种主要植物的生长及物质分配对增温的响应 垂穗披碱草在增温后株高、比叶面积和地上生物量均显著地增加;尼泊尔酸模在增温后比叶面积和单株平均生物量积累显著地增加,而各组分中,增温处理使叶的生物量显著增加,而根的生物量却显著下降;鹅绒委陵菜在增温后株高、比叶面积和单株平均生物量积累显著地减少,而各组分中,增温处理使叶和茎的生物量显著减少,根的生物量却显著地增加。 尼泊尔酸模的LMR、RMR、R/S、根部碳含量、碳和氮在叶片与根部的分配比例在增温后显著地增加,而SMR、根部氮含量、碳和氮在茎部的分配比例在增温后却显著地降低;鹅绒委陵菜的RMR、R/S、碳和氮在根部的分配比例在增温后显著地增加,而SMR、LMR、碳在叶片的分配比例在增温后却显著地降低 7、几种主要植物的光合生理过程对增温的响应 增温使垂穗披碱草和尼泊尔酸模叶片中的叶绿素a、叶绿素b、总叶绿素含量显著增加;而鹅绒委陵菜叶片的叶绿素a、叶绿素b、总叶绿素含量在增温后显著减少,类胡萝卜素含量在增温后却显著增加。 增温对3种植物的气体交换产生了显著影响。其中,垂穗披碱草和尼泊尔酸模叶片的光响应曲线在增温后明显高于对照处理,A、E、gs、Pmax、、Rday、AQY和LSP显著增加,而LCP则显著降低;鹅绒委陵菜的光响应曲线在增温后则明显的低于对照处理,A、E、gs、Pmax、、Rday、AQY和LSP显著减少,而LCP则显著增加。 增温后垂穗披碱草和尼泊尔酸模叶片的Fv/Fm、Yield和qP显著增加;而鹅绒委陵菜叶片的Fv/Fm、Yield和qP则显著减少,qN却显著地增加。 8、几种主要植物的抗氧化酶系统对增温的响应 增温使垂穗披碱草和尼泊尔酸模体内抗氧化酶活性和非酶促作用有所提高,植物膜脂过氧化作用降低;鹅绒委陵菜叶片中酶促反应和非酶促反应在增温后也显著提高,但可能由于增温后的土壤干旱超过了鹅绒委陵菜叶的抗氧化保护能力,抗氧化酶活性及非酶促反应(脯氨酸、类胡萝卜素)的提高不足以完全清除干旱诱导形成的过量活性氧,因此叶片的膜脂过氧化程度仍然显著提高。 Enrichment of atmospheric greenhouse gases resulted from human activities such as fossil fuel burning and deforestation has increased global mean temperature by 0.6 ℃ in the 20th century and is predicted to increase in this century by 1.4-5.8 ℃. The global warming will have profound, long-term impacts on terrestrial plants and ecosystems. The ecoologcial consequences arising from global warming have also become the very important issuses of global change research. The terrestrial habitats of high-elevation and high-latitude ecosystems are regarded as the most sensitive to changing climate. The alpine meadow ecosystme, which resulted from the composite effects of mountain extreme climatic factors in Tibetan Plateau, is thus thought to be especially vulnerable and sensitive to global warming. In this paper, the response of plant community and several main species in the alpine meadow of Northewst Sichuan to experimemtal warming was studied by using open-top chambers (OTC). The aim of the this study was to research the warming effects on plant community structure, substance allocation, growth and physiological processes of several mian species, and to explore the biological and ecological mechanism of how the alpine meadow plants acclimate and adapt to future global warming. The results were as follows: 1. Warming effects of OTC The mean soil temperature, soil surface temperature and air temperature in OTC manipulation increased by 0.28℃、0.46℃ and 1.4℃ compared to the control during the growing season. This suggested that the OTC used in our study had increased temperature there. Meanwhile, the OTC manipulation slightly altered thermal conditions, but the same amount of precipitation was supplied to both the OTC manipulation and the control, so higher soil evaporation and plant transpiration in OTC manipulation directly lead to the decrease of soil surface water content. 2. The reponse of community structure to experimental warming The species richness was not changed by the short-term effect of OTC manipulation. However, experimental warming changed the microenvironment of plant community, therefore competitive balances among species were shift, leading to changes in species dominance. In the present study, the dominant plant species in the control plots were some forbs including Potentilla anserine, Geranium pylzowianum, Thlaspi arvense and Arenaria serpyllifolia, however, the importance value of some gramineous grasses including Elymus nutans, Deschampsia caespitosa, Festuca ovina, and some forbs including Euphrasia tatarica and Rumex acetosa significantly increased in OTC. The different biology characteristics and resource utilizations between gramineous grasses and forbs, and enhanced temperature caused change in some environment factors such as soil water content. As a result, the coverage and biomass of gramineous grasses significantly increased in OTC compared to the control, however, the coverage and biomass of forbs singnifciantly decreased in OTC compared to the control. 3. The reponse of plant growing season to experimental warming Both the standing dead and fallen litter biomass in OTC were lower than those in the control in October, and the biomass of aboveground live-vegetation in OTC was higher than that of the control. The results indicated that the senescence of plants was postponed, and the growing season was prolonged in our research. 4. The reponse of community biomass accumulation and its allocation to experimental warming Experimental warming caused the decrease of aboveground live biomass and belowground root biomass except for the aboveground live biomass in October. Experimental warming also had pronounced effects on the pattern of root biomass allocation. In the present study, the root biomass in 0-10cm soil layer increased in OTC manipulation compared to the control, however, the root biomass in the 20-30cm soil layer decreased in OTC manipulation compared to the control. 5. The reponse of community C and N content to experimental warming The C concentration and stock in aboveground live and belowground root both increased in OTC manipulation compared to the control. However, the N concentration and stock in aboveground live and belowground root both decreased in OTC manipulation compared to the control. 6. The reponse of gowth and biomass, C and N alloction of several species to experimental warming Experimental warming significantly increased the height, SLA (specific leaf area) and aboveground biomass of Elymus nutans in OTC manipulation compared to the control. The SLA and total biomass of Rumex acetosa also significantly increased in OTC manipulation compared to control, among the different components of Rumex acetosa, leaf biomass significantly increased, but root biomass significantly decreased in OTC manipulation compared to the control. However, the height, SLA and total biomass of Potentilla anserina significantly decreased in OTC manipulation compared to the control, among the different component of Potentilla anserina, leaf and stem biomass significantly decreased, but root biomass significantly increased in OTC manipulation compared to the control. The LMR (leaf mass ratio), RMR (root mass ratio), R/S (shoot/root biomass ration) and root C concentration of Rumex acetosa significantly increased in OTC manipulation compared to outside control, also, Rumex acetosa allocated relatively more C and N content to leaf and root in response to experimental warming, however, the SMR (stem mass ration) and root N concentration of Rumex acetosa significantly decreased in OTC manipulation compared to outside control, also, Rumex acetosa allocated relatively less C and N content to stem in response to experimental warming. The RMR and R/S of Potentilla anserina significantly increased in OTC manipulation compared to outside control, also, Potentilla anserina allocated relatively more C and N content to root in response to experimental warming, however, the SMR and LMR of Potentilla anserina significantly decreased in OTC manipulation compared to outside control, also, Potentilla anserina allocated relatively less C and N content to leaf in response to experimental warming. 7. The reponse of physiological processes of several species to experimental warming Experimental warming significantly increased chlorophyll a, chlorophyll b and total chlorophyll of Elymus nutans and Rumex acetosa in OTC manipulation compared to outside control. However, chlorophyll a, chlorophyll b, total chlorophyll and carotenoid of Potentilla anserina in OTC manipulation significantly decreased compared to outside control. Experimental warming had pronounced effects on gas exchange of Elymus nutans, Rumex acetosa and Potentilla anserine. In the present study, warming markedly increased the light response curves of Elymus nutans and Rumex acetosa in OTC manipulation compared to outside control, and also singnificantly increased A (net photosynthesis rate), E (transpiration rate), gs (stomatal conductance), Pmax (maximum net photosynthetic rate), Rday (dark respiration rate), AQY (apparent quantum yield) and LSP (light saturation point), but LCP (photosynthetic light compensation) of Elymus nutans and Rumex acetosa in OTC manipulation singnificantly decreased compared to outside control. However, warming markedly decreased the light response curves of Potentilla anserina in OTC manipulation compared to outside control, and also singnificantly decreased A, E, gs, Pmax, Rday, AQY and LSP, but LCP of Potentilla anserina in OTC manipulation singnificantly increased compared to outside control. Experimental warming singnificantly increased the chlorophyll fluorescence kinetics parameters such as Fv/Fm, Yield and qP of Elymus nutans and Rumex acetosa and qN of Potentilla anserina in OTC manipulation, but Fv/Fm, Yield and qP of Potentilla anserina in OTC manipulation singnificantly decreased. 8. The reponse of antioxidative systems of several species to experimental warming Experimental warming tended to increase the activities of antioxidative enzymes and stimulate the role of non-enzymes of Elymus nutans and Rumex acetosa. As a result, MDA content of Elymus nutans and Rumex acetosa decreased. The activities of antioxidative enzymes and non-enzymes of Potentilla anserina also significantly increased in OTC manipulation, but more O2- was produced because of lower soil water content, and the O2- accumulation exceeded the defense ability of antioxidative systems and non-enzymes fuctions. As a result, MDA content of Potentilla anserine still increased in OTC manipulation compared to outside control.
Resumo:
由于人类活动所引起的地球大气层中温室气体的富集已导致全球地表平均温度在20 世纪升高了0.6 ¡æ,并预测在本世纪将上升1.4-5.8 ¡æ。气候变暖对陆地植物和生态系统产生深远影响,并已成为全球变化研究的重要议题。位于青藏高原东部的川西亚高山针叶林是研究气候变暖对陆地生态系统影响的重要森林类型。森林采伐迹地和人工云杉林下作为目前该区人工造林和森林更新的两种重要生境,二者截然不同的光环境对亚高山针叶林不同物种更新及森林动态有非常重要的影响。 本文以青藏高原东部亚高山针叶林几种主要森林树种为研究对象,采用开顶式增温法(OTCs)模拟气候变暖来研究增温对生长在两种不同光环境下(全光条件和林下低光环境)的几种幼苗早期生长和生理的影响,旨在从更新角度探讨亚高山针叶林生态系统不同树种对气候变暖在形态或生理上的响应差异,其研究结果可在一定程度上为预测气候变暖对亚高山针叶林物种组成和演替动态提供科学依据,同时也可为未来林业生产管理者提供科学指导。 1、与框外对照相比,OTCs 框内微环境发生了一些变化。OTCs 框内与框外对照气温年平均值分别为5.72 ¡æ和5.21 ¡æ,而地表温度年平均值分别为5.34 ¡æ和5.04 ¡æ,OTCs 使气温和地表年平均温度分别提高了0.51 ¡æ和0.34 ¡æ;OTCs框内空气湿度年平均值约高于框外对照,二者分别为90.4 %和85.3 %。 2、增温促进了三种幼苗生长和生物量的积累,但增温效果与幼苗种类及所处的光环境有关。无论在全光或林下低光条件下,增温条件下云杉幼苗株高、地径、分支数、总生物量及组分生物量(根、茎、叶重)都显著地增加;增温仅在全光条件下使红桦幼苗株高、地径、总生物量及组分生物量(根、茎、叶重)等参数显著地增加,而在林下低光条件下增温对幼苗生长和生物量积累的影响效果不明显;冷杉幼苗生长对增温的响应则与红桦幼苗相反,增温仅在林下低光条件下对冷杉幼苗生长和形态的影响才有明显的促进作用。 增温对三种幼苗的生物量分配模式产生了不同的影响,并且这种影响也与幼苗所处的光环境有关。无论在全光或林下低光环境下,增温都促使云杉幼苗将更多的生物量分配到植物地下部分,从而导致幼苗在增温条件下有更高的R/S 比;增温仅在林下低光条件下促使冷杉幼苗将更多的生物量投入到植物叶部,从而使幼苗R/S 比显著地降低;增温在全光条件下对红桦幼苗生物量分配的影响趋势与冷杉幼苗在低光条件下相似,即增温在全光条件下促使红桦幼苗分配更多的生物量到植物同化部分—叶部。 3、增温对亚高山针叶林生态系统中三种幼苗气体交换和生理表现的影响总体表现为正效应(Positive),即增温促进了几种幼苗的生理活动及其表现:(i)无论在全光或林下低光环境下,增温使三种幼苗的光合色素含量都有所增加;(ii)增温在一定程度上提高了三种使幼苗的PSII 光系统效率(Fv/Fm),从而使幼苗具有更强的光合电子传递活性;增温在一定程度使三种幼苗潜在的热耗散能力(NPQ)都有所增强,从而提高幼苗防御光氧化的能力;(iii)从研究结果来看,增温通过增加光合色素含量和表观量子效率等参数而促进幼苗的光合作用过程。总体来说增温对幼苗生理过程的影响效果与幼苗种类及所处的光环境有关,增温仅在全光条件下对红桦幼苗光合过程的影响才有明显的效果,而冷杉幼苗则相反,增温仅在低光条件下才对幼苗的生理过程有显著的影响。 4、增温对三种幼苗的抗氧化酶系统产生了一定的影响。从总体来说,增温使几种幼苗活性氧含量及膜脂过氧化作用降低,从而在一定程度上减轻了该区低温对植物生长的消极影响;增温倾向表明使三种幼苗体内抗氧化酶活性和非酶促作用有所提高,从而有利于维持活性氧代谢平衡。但增温影响效果与幼苗种类所处的光环境及抗氧化酶种类有关,增温对冷杉幼苗抗氧化酶活性的影响仅在林下低光环境下效果明显,而对红桦幼苗抗氧化酶活性的影响仅在全光条件下才有明显的效果。 总之,增温促进了亚高山针叶林生态系统中三种幼苗的生长和生理表现,但幼苗生长和生理对增温的响应随植物种类及所处的光环境不同而变化,这种响应差可能异赋予了不同植物种类在未来气候变暖背景下面对不同环境条件时具有不同的适应力和竞争优势,从而对亚高山针叶林生态系统物种组成和森林动态产生潜在的影响。 Enrichment of atmospheric greenhouse gases resulted from human activities suchas fossil fuel burning and deforestation has increased global mean temperature by 0.6¡æ in the 20th century and is predicted to increase it by 1.4-5.8 ¡æ. The globalwarming will have profound, long-term impacts on terrestrial plants and ecosystems.The ecoologcial consequences arising from global warming have also become thevery important issuses of global change research. The subalpine coniferous forests inthe eastern Qinghai-Tibet Plateau provide a natural laboratory for the studying theeffects of climate warming on terrestrial ecosystems. The light environment differssignificantly between clear-outs and spruce plantations, which is particularlyimportant for plant regeneration and forest dynamics in the subalpine coniferous forests. In this paper, the short-term effects of two levels of air temperature (ambient andwarmed) and light (full light and ca. 10% of full light regimes) on the early growthand physiology of Picea asperata, Abies faxoniana and Betula albo-sinensis seedlingswas determined using open-top chambers (OTCs). The aim of the present study wasto understand the differences between tree species in their responses to experimentalwarming from the perspective of regeneration. Our results could provide insights intothe effects of climate warming on community composition and regeneration behavior for the subalpine coniferous forest ecosystem processes, and provide scientificdirection for the production and management under future climate change. 1. The OTCs manipulation slightly altered thermal conditions during the growingseason compared with the outside chambers. The annual mean air temperature andsoil surface temperature was 5.72 and 5.34 ¡æ (within the chambers), and 5.21 and5.04 ¡æ (outside the chambers), respectively. The OTCs manipulation increased airtemperature and soil surface temperature by 0.51 and 0.34 ¡æ on average, respectively.Air relative humidity was slightly higher inside the OTCs compared with the controlplots, with 90.4 and 85.3 %, respectively. 2. Warming generally stimulated the growth and biomass accumulation of thethree tree species, but the effects of warming on growth and development variedbetween light conditions and species. Irrespective of light regimes, warmingsignificantly increased plant height, root collar diameter, total biomass, componentbiomass (stem, foliar and root biomass) and the number of branches in P. asperataseedlings; For A. faxoniana seedlings, significant effects of warming on all the tested parameters (plant height, root collar diameter, total biomass, and component biomass) were found only under low light conditions; In contrast, the growth responses of B.albo-sinensis seedlings to warming were found only under full light conditions. Warming had pronounced effects on the pattern of carbon allocation. Irrespectiveof light regimes, the P. asperata seedlings allocated relatively more biomass to rootsin responses to warming, which led to a higher R/S. Significant effects of warming onbiomass allocation were only found for the A. faxoniana seedlings grown under lowlight conditions, with significantly increased in leaf mass ratio (LMR) and decreasedin R/S in responses to warming manipulation. The carbon allocation responses of B.albo-sinensis seedling to warming under full light conditions were similar with theresponse of A. faxoniana seedlings grown under low light conditions. Warmingsignificantly decreased root mass ratio (RMR), and increased leaf mass ratio (LMR)and shoot/root biomass ratio (S/R) for the B. albo-sinensis seedlings grown under full light conditions. 3. Warming generally had a beneficial effect on physiological processes of dominant tree species in subalpine coniferous forest ecosystems: (i) Warming markedincreased the concentrations of photosynthetic pigments in both tree species, but theeffects of warming on photosynthetic pigments were greater under low lightconditions than under full light conditions for the two conifers; (ii) Warming tended toenhance the efficiency of PSII in terms of increase in Fv/Fm, which was related tohigher chloroplast electron transport activity; and enhance non-radiative energydissipation in terms of in increase in NPQ, which may reflect an increased capacity inpreventing photooxidation; (iii) Warming may enhance photosynthesis and advancephysiological activity in plants by increasing photosynthetic pigment concentration,the efficiency of PSII and apparent quantum yield (Φ) etc. From the results, theeffects of warming on seedlings’ physiological performance varied between lightenvironment and species. The effects of warming on photosynthesis performance of B.albo-sinesis seedlings were pronounced only under full light conditions, while thephysiological responses of A. faxoniana seedlings to warming were found only underthe 60-year plantation. These results provided further support for the observationsabove on growth responses of seedlings to warming. 4. Warming had marked effects on antioxidative systems of the three seedlings.Warming generally decreased H2O2 accumulation and the rate of O2- production, andalleviated degree of lipid peroxidation in terms of decreased MDA content, whichalleviated to some extent the negative effects of low temperature on the plant growthand development in this region; Warming tended to increase the activities ofantioxidative enzymes and stimulate the role of non-enzymatic AOS scavenging,which helped to create an balance in maintaining AOS metabolites for the threeseedlings. Nevertheless, the effects of warming on antioxidative defense systems werepronounced only under the 60-year plantation for the A. faxoniana seedlings. Incontrast, the marked effects of warming on antioxidative defense systems for the B.albo-sinesis seedlings were found only under the full light conditions. In sum, warming is considered to be generally positive in terms of growth andphysiological process. However, the responses of growth and physiology performanceto warming manipulation varied between species and light regimes. Competitive and adaptive relationships between tree species may be altered as a result of responsedifferences to warming manipulation, which is one mechanism by which globalwarming will alter species composition and forest dynamics of subalpine coniferousforest ecosystems under future climate change.
Resumo:
根据中国西部森林的现状 ,采用生态学与地理学的方法 ,分析了因毁林开荒造成水土流失、洪涝灾害、沙尘风暴、干旱少雨、江河断流、物种减少等危害对国民经济发展所造成的影响 ,以及近几年所产生的一系列生态环境问题 .探讨了退耕还林 (草 )对我国的生态环境治理、西部持续发展、江河整治、国土整治综合措施运用、西部农民脱贫致富的作用 .
Resumo:
以浅沟集水区为研究对象,分析了子午岭地区林地被开垦破坏15年后裸露地在不同侵蚀强度和侵蚀方式下的土壤养分流失和土壤微生物数量的变化。结果表明,林地开垦破坏后,土壤侵蚀加剧发展,侵蚀强度达159.7t/(hm2.a),是林地土壤侵蚀量的上千倍。开垦破坏15年后,裸露地浅沟集水区不同地形部位表层土壤全氮、有机碳、速效磷和土壤微生物总数显著减少,同林地相比,依次分别减少37.9%~82.6%、42.7%~86.4%、24.2%~80.3%和31.8%9~2.0%。在裸露地浅沟集水区梁坡随坡长的增加,表层土壤有机碳、全氮和速效磷含量及微生物总数呈显著的下降趋势,且沟槽的土壤各养分含量及微生物总数明显低于沟间。裸露地浅沟集水区土壤养分流失强度及微生物数量减少幅度在浅沟集水区的空间分布与土壤侵蚀方式和侵蚀强度相对应。林地开垦破坏15年后,土壤养分以有机碳流失最严重,其次分别为速效磷、全氮;微生物中的真菌减少幅度最大,细菌次之,放线菌减少幅度最小。
Resumo:
It is more and more acknowledged that land-use/cover dynamic change has become a key subject urgently to be dealt with in the study of global environmental change. Supported by the Landsat TM digital images, spatial patterns and temporal variation of land-use change during 1995 -2000 are studied in the paper. According to the land-use dynamic degree model, supported by the 1km GRID data of land-use change and the comprehensive characters of physical, economic and social features, a dynamic regionalization of land-use change is designed to disclose the spatial pattern of land-use change processes. Generally speaking, in the traditional agricultural zones, e.g., Huang-Huai-Hai Plains, Yangtze River Delta and Sichuan Basin, the built-up and residential areas occupy a great proportion of arable land, and in the interlock area of farming and pasturing of northern China and the oases agricultural zones, the reclamation I of arable land is conspicuously driven by changes of production conditions, economic benefits and climatic conditions. The implementation of "returning arable land into woodland or grassland" policies has won initial success in some areas, but it is too early to say that the trend of deforestation has been effectively reversed across China. In this paper, the division of dynamic regionalization of land-use change is designed, for the sake of revealing the temporal and spatial features of land-use change and laying the foundation for the study of regional scale land-use changes. Moreover, an integrated study, including studies of spatial pattern and temporal process of land-use change, is carried out in this paper, which is an interesting try on the comparative studies of spatial pattern on change process and the change process of spatial pattern of land-use change.
Resumo:
Numerous cores and dating show the Yangtze River has accumulated about 1.16 x 10(12) t sediment in its delta plain and proximal subaqueous delta during Holocene. High-resolution seismic profiling and coring in the southern East China Sea during 2003 and 2004 cruises has revealed an elongated (similar to 800 km) distal subaqueous mud wedge extending from the Yangtze River mouth southward off the Zhejiang and Fujian coasts into the Taiwan Strait. Overlying what appears to be a transgressive sand layer, this distal clinoform thins offshore, from similar to 40 in thickness between the 20 and 30 m water depth to < 1-2 in between 60 and 90 m water depth, corresponding to an across shelf distance of less than 100 km. Total volume of this distal mud wedge is about 4.5 x 10(11) m(3), equivalent to similar to 5.4 x 10(11) t of sediment. Most of the sediment in this mud wedge comes from the Yangtze River, with some input presumably coming from local smaller rivers. Thus, the total Yangtze-derived sediments accumulated in its deltaic system and East China Sea inner shelf have amounted to about 1.7 x 10(12) t. Preliminary analyses suggest this longshore and across-shelf transported clinoform mainly formed in the past 7000 yrs after postglacial sea level reached its mid-Holocene highstand, and after re-intensification of the Chinese longshore current system. Sedimentation accumulation apparently increased around 2000 yrs BP, reflecting the evolution of the Yangtze estuary and increased land erosion due to human activities, such as fanning and deforestation. The southward-flowing China Coastal Current, the northward-flowing Taiwan Warm Current, and the Kuroshio Current appear to have played critical roles in transporting and trapping most of Yangtze-derived materials in the inner shelf, and hence preventing the sediment escape into the deep ocean. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
An inventory of isolated tree stands surrounded by desert pastures in Southern Tibet (A.R. Xizang, China) revealed more than 50 sites with vigorous trees of Juniperus convallium Rehder & E.H. Wilson and Juniperus tibetica Kom and additional more than 10 records where juniper trees had been destroyed between 1959-1976. The tree stands are not restricted to any specific habitat, and occur within an area stretching 650 km westwards from the current forest border of Southern Tibet. The trees are religious landmarks of the Tibetan Buddhists. The highest trees were found at an elevation of 4,860 m. Vegetation records, rainfall correlations and temperature data collected by local climate stations and successful reforestation trials since 1999 indicate that forest relicts fragmented through human interference could regenerate if current cattle grazing and deforestation practices are halted. The drought line of Juniperus forests in Southern Tibet is approximately 200-250 mm/a. A first pollen diagram from Lhasa shows forest decline associated with the presence of humans since at least 4,600 yr BP. The currently degraded commons developed in the last 600 yr. To date, no findings of remains of ancient forests in the Central Tibetan Highlands of the Changtang have been reported.