4 resultados para Critical Care and Intensive Care Medicine

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rupture in the heterogeneous crust appears to be a catastrophe transition. Catastrophic rupture sensitively depends on the details of heterogeneity and stress transfer on multiple scales. These are difficult to identify and deal with. As a result, the threshold of earthquake-like rupture presents uncertainty. This may be the root of the difficulty of earthquake prediction. Based on a coupled pattern mapping model, we represent critical sensitivity and trans-scale fluctuations associated with catastrophic rupture. Critical sensitivity means that a system may become significantly sensitive near catastrophe transition. Trans-scale fluctuations mean that the level of stress fluctuations increases strongly and the spatial scale of stress and damage fluctuations evolves from the mesoscopic heterogeneity scale to the macroscopic scale as the catastrophe regime is approached. The underlying mechanism behind critical sensitivity and trans-scale fluctuations is the coupling effect between heterogeneity and dynamical nonlinearity. Such features may provide clues for prediction of catastrophic rupture, like material failure and great earthquakes. Critical sensitivity may be the physical mechanism underlying a promising earthquake forecasting method, the load-unload response ratio (LURR).