1 resultado para Coureurs -- États-Unis

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The forming mechanism of the three - dimensional structures of proteins,i.e.the mechanism of protein folding,is a basic problem in molecular biology which is still unsolved unitl now. In which a core problem is whether there is the three – dimensional genetic information that decide the three - dimensional structures of proteins. However, the research on this field has mot yet been reported. Recently,we made a comparative study on the folded structures of more than 70 mature messeneger RNAs (mRNAs) and the three - dimensional structures of the proteins encoded by them,it has been found that there exist marked correspondences between their featured structures in the following aspects: 1.The number of the structural units. An RNA molecule can form a secondary structure(stem and loop structure) by the folding and the base pairing of itself. The elementary structural unit of an RNA secondary structure is hairpin(or compound hair pin).The regular structural unit in the secondary structure of a protein is # alpha # - helix or #beta# - sheet . We have found that the hairpin number in the secondary structure of each mature mRNA is equal or approximately equal to the number of the regular secondary structural unis of the encoded protein. 2 .Turning region. Turn is a main structrual element in the secondary structure of a protein, which decides the backbone orientation of a protein molecule to some extent .Our analysis shows that the nucleotide sequence segments in an mRNA which encode the turns of the corresponding protein are overall situated in the turning regions of the mRNA secondary structure such as haipin,bulge loop or multibaranch loops. 3 .The arrangement of structural elements in space. In order to understand the backbone orientation of an RNA molecule and the arangement of its structural elements in space,we have modeled the three一dimensional structure of the mRNA molecule on SGI workstation based on its secondary structure.The result shows that the spatial arrangement of most of the nucleotide sequence segments encoding the structural elements of a protein is consistent with that of these stretural exements in the protein. For instance,the nucleotide sequences corresponding to each pleated sheet of a # beta # - sheet structure are close to each other in the mRNA secondary stucture and in the three - dimensional structure,although some of the nucleotide segments are far apart from each other in the one - dimensional sequence. For another instance,the two triplet codons of cysteines which form a disulphide bridge geneal1y are very close to each other in the mRNA folded structure. In addition,we also analyzed the locations of the codons proline - coding and the distrbution of the nucleotide sequences #alpha# - helix - coding in the folded structures of mRNAs . Some distribution laws have been found. All of these results suggest that the transfer of the genetic information from mRNA to protein not only is one – dimensional but also is three - dime ns ional. That is,there exists the genetic information that decide the three - dimensional structures of proteins. To a certain extent,we could say that the mRNA folding detemines the protein folding. Based on these results,it would be possible to predict the three - dimensional structures of proteins from the primary,secondary and tertiary structures of the m RNAs at a higher accuracy.And more important is that a new clue has been provided to uncover the“spatial coding" of the genetic information.