276 resultados para Coupled modes
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Microcylinder resonators with multiple ports connected to waveguides are investigated by 2D finite-difference time-domain (FDTD) simulation for realizing microlasers with multiple outputs. For a 10 mu m radius microcylinder with a refractive index of 3.2 and three 2 mu m wide waveguides, confined mode at the wavelength of 1542.3 nm can have a mode Q factor of 6.7 x 10(4) and an output coupling efficiency of 0.76. AlGaInAs/InP microcylinder lasers with a radius of 10 mu m and a 2 mu m wide output waveguide are fabricated by planar processing techniques. Continuous-wave electrically injected operation is realized with a threshold current of 4 mA at room temperature, and the jumps of output power are observed accompanying a lasing mode transformation.
Resumo:
Mode coupling between the whispering-gallery modes (WGMs) is numerically investigated for a two-dimensional microdisk resonator with an output waveguide. The equilateral-polygonal shaped mode patterns can be constructed by mode coupling in the microdisk, and the coupled modes can still keep high quality factors (Q factors). For a microdisk with a diameter of 4.5 mu m and a refractive index of 3.2 connected to a 0.6-mu m-wide output waveguide, the coupled mode at the wavelength of 1490 nm has a Q factor in the order of 10(4), which is ten times larger than those of the uncoupled WGMs, and the output efficiency defined as the ratio of the energy flux confined in the output waveguide to the total radiation energy flux is about 0.65. The mode coupling can be used to realize high efficiency directional-emission microdisk lasers. (C) 2009 Optical Society of America
Resumo:
Modes in rectangular resonators are analyzed and classified according to symmetry properties, and quality factor (Q-factor) enhancement due to mode coupling is observed. In the analysis, mode numbers p and q are used to denote the number of wave nodes in the direction of two orthogonal sides. The even and odd mode numbers correspond to symmetric and antisymmetric field distribution relative to the midlines of sides, respectively. Thus, the modes in a rectangle resonator can be divided into four classes according to the parity of p and q. Mode coupling between modes of different classes is forbidden; however, anti-crossing mode coupling between the modes in the same class exists and results in new modes due to the combination of the coupled modes. One of the combined modes has very low power loss and high Q-factor based on far-field emission of the analytical field distribution, which agrees well with the numerical results of the finite-difference time-domain (FDTD) simulation. Both the analytical and FDTD results show that the Q-factors of the high Q-factor combined modes are over one order larger than those of the original modes. Furthermore, the general condition required to achieve high-Q modes in the rectangular resonator is given based on the analytical solution.
Resumo:
AlGaInAs-InPmicrocylinder lasers connected with an output waveguide are fabricated by planar technology. Room-temperature continuous-wave operation with a threshold current of 8 mA is realized for a microcylinder laser with the radius of 10 mu m and the output waveguide width of 2 mu m. The mode Q-factor of 1.2 x 10(4) is measured from the laser spectrum at the threshold. Coupled mode characteristics are analyzed by 2-D finite-difference time-domain simulation and the analytical solution of whispering-gallery modes. The calculated mode Q-factors of coupled modes are in the same order as the measured value.
Resumo:
The mode characteristics for two coupled microdisks are investigated by the finite-difference time-domain technique. In the two coupled micodisks, mode coupling between the same order whispering-gallery modes (WGMs) results in coupled WGMs with split mode wavelengths. The numerical results show that the split mode wavelengths of the coupled first- and second-order WGMs can have a crossing point in some cases, which can induce anticrossing mode coupling between them and greatly reduce the mode Q factor of the coupled first-order WGMs. The time variation of mode field pattern shows the transformation between the coupled first- and second-order WGMs. (C) 2007 Optical Society of America
Resumo:
Coupled microcircular resonators tangentially coupled to a bus waveguide, which is between the resonators, are numerically investigated by the finite-difference time-domain technique. For symmetrically coupled microcircular resonators with refractive index of 3.2, radius of 2 mu m, and width of the bus waveguide of 0.4 mu m, a mode Q factor of the order of 105 is obtained for a mode at the frequency of 243 THz. An output coupling efficiency of as high as 0.99 is calculated for a mode with a Q factor ranging from 10(3) to 10(4). The mode Q factor is 2 orders larger than that of the modes confined in a single circular resonator tangentially coupled to the same bus waveguide. Furthermore, the high Q traveling modes in the coupled microcircular resonators are suitable for optical single processing.
Resumo:
We designed a two-dimensional coupled photonic crystal resonator array with hexagonal lattice. The calculation by plane-wave-expansion method shows that the dispersion curve of coupled cavity modes in the bandgap are much flattened in all directions in the reciprocal space. We simulated the transmission spectra of transverse electric (TE) wave along the Gamma K direction. Compared with the PC single cavity structure, the transmission ratio of the coupled cavity array increases more than three orders of magnitude, while the group velocity decreases to below 1/10, reaching 0.007c. The slow wave effect has potential application in the field of miniaturized tunable optical delay components and low-threshold photonic crystal lasers.
Resumo:
The Pade approximation with Baker's algorithm is compared with the least-squares Prony method and the generalized pencil-of-functions (GPOF) method for calculating mode frequencies and mode Q factors for coupled optical microdisks by FDTD technique. Comparisons of intensity spectra and the corresponding mode frequencies and Q factors show that the Pade approximation can yield more stable results than the Prony and the GPOF methods, especially the intensity spectrum. The results of the Prony method and the GPOF method are greatly influenced by the selected number of resonant modes, which need to be optimized during the data processing, in addition to the length of the time response signal. Furthermore, the Pade approximation is applied to calculate light delay for embedded microring resonators from complex transmission spectra obtained by the Pade approximation from a FDTD output. The Prony and the GPOF methods cannot be applied to calculate the transmission spectra, because the transmission signal obtained by the FDTD simulation cannot be expressed as a sum of damped complex exponentials. (C) 2009 Optical Society of America
Resumo:
A numerical analysis of an electron waveguide coupler based on two quantum wires coupled by a magnetically defined barrier is presented with the use of the scattering-matrix method. For different geometry parameters and magnetic fields, tunneling transmission spectrum is obtained as a function of the electron energy. Different from that of conventional electron waveguide couplers, the transmission spectrum of the magnetically coupled quantum wires does not have the symmetry with regard to those geometrically symmetrical ports, It was found that the magnetic field in the coupling region drastically enhances the coupling between the two quantum wires for one specific input port while it weakens the coupling for the other input port. The results can be well understood by the formation of the edge states in the magnetically defined barrier region. Thus, whether these edge states couple or decouple to the electronic propagation modes in the two quantum wires, strongly depend on the relative moving directions of electrons in the propagating mode in the input port and the edge states in the magnetic region. This leads to a big difference in transmission coefficients between two quantum wires when injecting electrons via different input ports. Two important coupler specifications, the directivity and uniformity, are calculated which show that the system we considered behaves as a good quantum directional coupler. (C) 1997 American Institute of Physics.
Resumo:
The Raman scattering study of vibrational modes and hole concentration in a ferromagnetic semiconductor Ga1-xMnxSb grown by Mn ion implantation, deposition and post-annealing has been presented. The experiments are performed both in implanted and unimplanted regions before and after etching the samples. The Raman spectra measured from the unimplanted region show only GaSb-like phonon modes. On the other hand, the spectra measured from the implanted region show additional phonon modes approximately at 115, 152, 269, 437 and 659 cm(-1). The experimental results demonstrate that the extra modes are associated with surface defects, crystal disorder and blackish layer that is formed due to Mn ion implantation, deposition and annealing processes. Furthermore, we have determined the hole concentration as a function of laser probing position by modeling the Raman spectra using coupled mode theory. The contributions of GaSb-like phonon modes and coupled LO-phonon plasmon mode are taken into consideration in the model. The hole-concentration-dependent CLOPM is resolved in the spectra measured from the implanted and nearby implanted regions. The hole concentrations determined by Raman scattering are found to be in good agreement with those measured by the electrochemical capacitance-voltage technique.
Resumo:
The dielectric response of a modulated three-dimensional electron system composed of a periodic array of quantum wells with weak coupling and strong coupling are studied, and the dispersions of the collective excitations and the single particle excitations as functions of wave vectors are given. It is found that for the nearly isolated multiple-quantum-well case with several subbands occupation, there is a three-dimensional-like plasmon when q(z)=0 (q(z) is the wave-vector component in the superlattice axis). There also exist intersubband collective excitations in addition to one intra-subband mode when q(z) not equal 0. The intra-subband mode has a linear dispersion relation with q(//) (the wave-vector component perpendicular to the superlattice axis) when q(//) is small. The inter-subband modes cover wider ranges in q(//) with increasing values of q(z). The energies of inter-subband collective excitations are close by the corresponding inter-subband single-particle excitation spectra. The collective excitation dispersions show obvious anisotropy in the 2D quantum limit. The calculated results agree with the experiment. The coupling between quantum wells affects markedly both the collective excitations and the single particle excitations spectra. The system shows gradually a near-three-dimensional electron gas character with increasing coupling. Copyright (C) 1996 Published by Elsevier Science Ltd
Resumo:
For the design of radio frequency micro-electro-mechanical systems (RF MEMS) switches, the reliability issue becomes increasingly important. This paper represents some failure phenomena of doubly supported capacitive RF MEMS switches that include observable destruction failure and directly measurable parameter degradation obtained from the actuating-voltage testing and scanning electron microscope (SEM) observation. The relevant failure modes as well as their failure mechanisms are identified.
Resumo:
With a newly developed Material Failure Process Analysis code (MFPA(2D)), influence of hetero geneity on fracture processes and strength characterization of brittle disorder materials such as rock or concrete is numerically studied under uniaxial compression and tension conditions. It is found th at, due to the heterogeneity of the disordered material, relatively more diffused micro-fractures appear in the early stage of loading. Different from homogeneous materials such as glass, macro-crack nucleation starts well before the peak stress is reached and the crack propagation and coalescence can be traced, which can be taken as a precursory to predict the macro-fracture of the material. The presence of residual strength in the post-peak region and the resemblance in the stress-strain curves between tension and compression are significant results and are found to be dependent on the heterogeneity of the specimens. Examples showing the tentative applications of MFPA(2D) in modeling failure of composite materials and rock or civil engineering problem are also given in this paper.
Resumo:
Problems involving coupled multiple space and time scales offer a real challenge for conventional frameworks of either particle or continuum mechanics. In this paper, four cases studies (shear band formation in bulk metallic glasses, spallation resulting from stress wave, interaction between a probe tip and sample, the simulation of nanoindentation with molecular statistical thermodynamics) are provided to illustrate the three levels of trans-scale problems (problems due to various physical mechanisms at macro-level, problems due to micro-structural evolution at macro/micro-level, problems due to the coupling of atoms/molecules and a finite size body at micro/nano-level) and their formulations. Accordingly, non-equilibrium statistical mechanics, coupled trans-scale equations and simultaneous solutions, and trans-scale algorithms based on atomic/molecular interaction are suggested as the three possible modes of trans-scale mechanics.