65 resultados para Cone and plate

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The excess Helmholtz free energy functional for associating hard sphere fluid is formulated by using a modified fundamental measure theory [Y. X. Yu and J. Z. Wu, J. Chem. Phys. 117, 10156 (2002)]. Within the framework of density functional theory, the thermodynamic properties including phase equilibria for both molecules and monomers, equilibrium plate-fluid interfacial tensions and isotherms of excess adsorption, average molecule density, average monomer density, and plate-fluid interfacial tension for four-site associating hard sphere fluids confined in slit pores are investigated. The phase equilibria inside the hard slit pores and attractive slit pores are determined according to the requirement that temperature, chemical potential, and grand potential in coexistence phases should be equal and the plate-fluid interfacial tensions at equilibrium states are predicted consequently. The influences of association energy, fluid-solid interaction, and pore width on phase equilibria and equilibrium plate-fluid interfacial tensions are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel engineering thermoplastic, phenolphthalein poly (ether-ether-sulfone) (PES-C) was blended with a commercial thermotropic liquid crystalline polymer(TLCP), Vectra A950, up to 30 weight percent of TLCP. A rheometrics dynamic spectrometer (RDS-I) and a CEAST capillary rheometer, a rheoscope 1000 were employed to investigate the melt rheology and extrusion behaviour at both the low and high shearing rates. The morphologies of the blends under different shearing were observed with a scanning electron microscope(SEM) and correlated to the observed rheology. The principal normal stress differences measured with cone-and-plate geometry give a temperature-independent correlation for both blend and PES-C when they are plotted against shear stress. But the extrudate swell of the blends showed a strong temperature dependence at each shear stress. The concentration dependence of extrudate swell shows a contrary behaviour to that of the inorganic filled system. A reasonable hypothesis based on the relaxation and disorientation of TLCP during flowing in the capillary and exiting was given to explain it. The melt fracture was checked after extrusion from capillary and was discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemorheology and corresponding models for an epoxy-terminated poly(phenylene ether ketone) (E-PEK) and 4,4'-diaminodiphenyl sulfone (DDS) system were investigated using a differential scanning calorimeter (DSC) and a cone-and-plate rheometer. For this system, the reported four-parameter chemorheological model and modified WLF chemorheological model can only be used in an isothermal or nonisothermal process, respectively. In order to predict the resin viscosity variation during a stepwise temperature cure cycle actually used, a new model based on the combination of the four-parameter model and the modified WLF model was developed. The combined model can predict the resin viscosity variation during a stepwise temperature cure cycle more accurately than the above two models. In order to simplify the establishment of this model, a new five-parameter chemorheological model was then developed. The parameters in this five-parameter model can be determined through very few rheology and DSC experiments. This model is practicable to describe the resin viscosity variation for isothermal, nonisothermal, or stepwise temperature cure cycles accurately. The five-parameter chemorheological model has also successfully been used in the E-PEK systems with two other curing agents, i.e., the diamine curing agent with the addition of a boron trifluride monoethylamine (BF3-MEA) accelerator and an anhydride curing agent (hexahydrophthalic acid anhydride). (C) 1997 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on high-order compact upwind scheme, a high-order shock-fitting finite difference scheme is studied to simulate the generation of boundary layer disturbance waves due to free-stream waves. Both steady and unsteady flow solutions of the receptivity problem are obtained by resolving the full Navier-Stokes equations. The interactions of bow-shock and free-stream disturbance are researched. Direct numerical simulation (DNS) of receptivity to free-stream disturbances for blunt cone hypersonic boundary layers is performed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The hypersonic waverider forebody is designed in this paper. For the present waverider, the undersurface is carved out as a stream surface of a hypersonic inviscid flow field around wedge-elliptic cone, and the upper surface is assumed to be a freestream surface. A finite-volume code is used to generate the three-dimensional flow field. The leading edge is determined by satisfying the condition that the lip is situated at the intersection line of shocks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we present a lattice Boltzmann model to simulate compressible flows by introducing an attractive force. This scheme has two main advantages: one is to soften sound speed effectively, which greatly raises the Mach number (up to 5); another is its relative simple procedure. Simulations of the March cone and the comparison between theoretical expectations and simulations demonstrate that the scheme is effective in the simulation of compressible flows with high Mach numbers, which would create many new applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effects of the free-stream thermo-chemical state on the test model flow field in the high-enthalpy tunnel are studied numerically. The properties of the free-stream, which is in thermo-chemical non-equilibrium, are determined by calculating the nozzle flow field. A free-stream with total enthalpy equal to the real one in the tunnel while in thermo-chemical equilibrium is constructed artificially to simulate the natural atmosphere condition. The flow fields over the test models (blunt cone and Apollo command capsule model) under both the non-equilibrium and the virtual equilibrium free-stream conditions are calculated. By comparing the properties including pressure, temperature, species concentration and radiation distributions of these two types of flow fields, the effects of the non-equilibrium state of the free-stream in the high-enthalpy shock tunnel are analyzed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study quantum oscillations of the magnetization in Bi2Se3 (111) surface system in the presence of a perpendicular magnetic field. The combined spin-chiral Dirac cone and Landau quantization produce profound effects on the magnetization properties that are fundamentally different from those in the conventional semiconductor two-dimensional electron gas. In particular, we show that the oscillating center in the magnetization chooses to pick up positive or negative values depending on whether the zero-mode Landau level is occupied or empty. An intuitive analysis of these features is given and the subsequent effects on the magnetic susceptibility and Hall conductance are also discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel form of ball-like carbon material with its size in micrometer range was prepared from coal with nickel as catalyst by arc plasma method. The carbon material has been systematically studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and ultraviolet laser Raman spectroscopy. The SEM observation shows that the novel carbon material exists in various forms such as individual balls, net-like and plate-like forms, all of which have a quite smooth surface. The diameters of these carbon spheres are quite uniform and in a narrow range of 10-20 mum. The EDS analysis reveals that the ball-like carbon material contains more than 99.5% of carbon and a little amount of other elements such as nickel, silicon and aluminum, The XRD and UV-Raman results reveal that the novel carbon material is a kind of highly graphitized carbon. The growth mechanism of the ball-like carbon material was proposed and discussed in terms of arc plasma parameters and the chemical structure of coal-based carbon. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Modeling study is performed to compare the flow and heat transfer characteristics of laminar and turbulent argon thermal-plasma jets impinging normally upon a flat plate in ambient air. The combined-diffusion-coefficient method and the turbulence-enhanced combined-diffusion-coefficient method are employed to treat the diffusion of argon in the argon-air mixture for the laminar and the turbulent cases, respectively. Modeling results presented include the flow, temperature and argon concentration fields, the air mass flow-rates entrained into the impinging plasma jets, and the distributions of the heat flux density on the plate surface. It is found that the formation of a radial wall jet on the plate surface appreciably enhances the mass flow rate of the ambient air entrained into the laminar or turbulent plasma impinging-jet. When the plate standoff distance is comparatively small, there exists a significant difference between the laminar and turbulent plasma impinging-jets in their flow fields due to the occurrence of a large closed recirculation vortex in the turbulent plasma impinging-jet, and no appreciable difference is found between the two types of jets in their maximum values and distributions of the heat flux density at the plate surface. At larger plate standoff distances, the effect of the plate on the jet flow fields only appears in the region near the plate, and the axial decaying-rates of the plasma temperature, axial velocity and argon mass fraction along the axis of the laminar plasma impinging-jet become appreciably less than their turbulent counterparts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present paper, it is shown that the zero series eigenfunctions of Reissner plate cracks/notches fracture problems are analogous to the eigenfunctions of anti-plane and in-plane. The singularity in the double series expression of plate problems only arises in zero series parts. In view of the relationship with eigen-values of anti-plane and in-plane problem, the solution of eigen-values for Reissner plates consists of two parts: anti-plane problem and in-plane problem. As a result the corresponding eigen-values or the corresponding eigen-value solving programs with respect to the anti-plane and in-plane problems can be employed and many aggressive SIF computed methods of plane problems can be employed in the plate. Based on those, the approximate relationship of SIFs between the plate and the plane fracture problems is figured out, and the effect relationship of the plate thickness on SIF is given.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

高超声速条件下,乘波体布局具有高升阻比特性,本文应用单纯形加速法,以最大升阻比为目标,开展了锥形流乘波体布局优化设计研究.特别是,研究了在高层大气飞行时雷诺数效应与气动特性的关系,从乘波体飞行高度与设计长度两方面探讨雷诺数对乘波体优化的影响,结果表明:给定设计马赫数和圆锥角情况下,对于最大升阻比优化乘波体,其雷诺数越小,摩擦阻力越大,而升阻比越低.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Direct numerical simulation of the turbulent boundary layer over a sharp cone with 20 degrees cone angle (or 10 degrees half-cone angle) is performed by using the mixed seventh-order up-wind biased finite difference scheme and sixth-order central difference scheme. The free stream Mach number is 0.7 and free stream unit Reynolds number is 250000/inch. The characteristics of transition and turbulence of the sharp cone boundary layer are compared with those of the flat plate boundary layer. Statistics of fully developed turbulent flow agree well with the experimental and theoretical data for the turbulent flat-plate boundary layer flow. The near wall streak-like structure is shown and the average space between streaks (normalized by the local wall unit) keeps approximately invariable at different streamwise locations. The turbulent energy equation in the cylindrical coordinate is given and turbulent energy budget is studied. The computed results show that the effect of circumferential curvature on turbulence characteristics is not obvious.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cell adhesion, mediated by specific receptor-ligand interactions, plays an important role in biological processes such as tumor metastasis and inflammatory cascade. For example, interactions between beta(2)-integrin ( lymphocyte function-associated antigen-1 and/or Mac-1) on polymorphonuclear neutrophils (PMNs) and ICAM-1 on melanoma cells initiate the bindings of melanoma cells to PMNs within the tumor microenvironment in blood flow, which in turn activate PMN-melanoma cell aggregation in a near-wall region of the vascular endothelium, therefore enhancing subsequent extravasation of melanoma cells in the microcirculations. Kinetics of integrin-ligand bindings in a shear flow is the determinant of such a process, which has not been well understood. In the present study, interactions of PMNs with WM9 melanoma cells were investigated to quantify the kinetics of beta(2)-integrin and ICAM-1 bindings using a cone-plate viscometer that generates a linear shear flow combined with a two-color flow cytometry technique. Aggregation fractions exhibited a transition phase where it first increased before 60 s and then decreased with shear durations. Melanoma-PMN aggregation was also found to be inversely correlated with the shear rate. A previously developed probabilistic model was modified to predict the time dependence of aggregation fractions at different shear rates and medium viscosities. Kinetic parameters of beta(2)-integrin and ICAM-1 bindings were obtained by individual or global fittings, which were comparable to respectively published values. These findings provide new quantitative understanding of the biophysical basis of leukocyte-tumor cell interactions mediated by specific receptor-ligand interactions under shear flow conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mechanisms of shock focusing in inner cavities of double wedge and cone are compared with that of traditional curved-surface shock focusing. The results show that there are many high temperature regions just behind shock surface which appear in two place alternately, one is near the surface of wall and the other is near the centerline. Also, changes in temperature, pressure, energy and power of the high temperature regions were analyzed and the results show that energy and power per unit volume increase, but total energy and power in the high temperature regions decrease during the process of shock moving forward the apex of double wedge or cone.