225 resultados para Conductron Electron Spin Resonance

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Monte Carlo simulation on the basis of quantum trajectory approach is carried out for the measurement dynamics of a single-electron spin resonance. The measured electron, which is confined in either a quantum dot or a defect trap, is tunnel coupled to a side reservoir and continuously monitored by a mesoscopic detector. The simulation not only recovers the observed telegraphic signal of detector current, but also predicts unique features in the output power spectrum which are associated with electron dynamics in different regimes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The long lasting phosphorescence (LLP) phenomenon in Mn2+-doped ceramic based on ZnO-Al2O3-SiO2 (ZASM) is observed. After irradiation by a UVP standard mercury lamp peaking at 254 nm with a power of 0.6 mW/cm(2) for 15 min, the ceramic sample emits a bright green light peaking at 519 nm, which can be seen in the dark even 15 h after the removal of UVP standard mercury lamp by the naked eyes whose limit of light perception is 0.32 mcd/m(2). The initial afterglow intensity reaches about 1900 mcd/m(2), and the color coordinate (X, Y) is (0.2280, 0.5767) at about 10 s after stopping irradiation. The thermoluminescence (TL) spectra show that there are at least three kinds of trap centers with different trap levels while electron spin resonance (ESR) spectra indicate that there are electron- and hole-trapping centers induced after irradiation by a UVP standard mercury lamp. Based on these measurements, the LLP is considered to be due to the recombination of electrons and holes at trapping centers with different levels, which are firstly thermally released back to Mn2+ and then give rise to the bright green LLP at room temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ESR of PPy films doped with Co (W2O7)(6)(10-) and CuW12O406- ions were reported and discussed. Results show that heteropolyanions not only play the role of neutralizing electricity in the PPy film, but also interact with the PPy molecular chain to form some adducts. The adducts affect the electronic structure of the PPy film and are unstable at more positive or more negative potentials. Dysonian ESR lineshape was recorded for the dry PPy film with CuW12O406- for the first time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electron spin resonance (ESR) is optically detected by monitoring the microwave-induced changes in the circular polarization of the neutral exciton (X) and the negatively charged exciton (X-) emission in CdTe quantum wells with low density of excess electrons. We find that the circular polarization of the X and X- emission is a mapping of the spin polarization of excess electrons. By analyzing the ESR-induced decrease in the circular polarization degree of the X emission, we deduce the microwave-induced electron spin-flip time >0.1 mus, which is much longer than the recombination time of X and X-. This demonstrates that the optically detected ESR in type I quantum wells with low density of excess electrons does not obey the prerequisite for the conventional optically detected magnetic resonance. (C) 2001 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Submicron Hall magnetometry has been demonstrated as an efficient technique to probe extremely weak magnetic fields. In this letter, we analyze the possibility of employing it to detect single electron spin. Signal strength and readout time are estimated and discussed with respect to a number of practical issues. (C) 2005 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-resolved Faraday rotation spectroscopy is currently exploited as a powerful technique to probe spin dynamics in semiconductors. We propose here an all-optical approach to geometrically manipulate electron spin and to detect the geometric phase by this type of extremely sensitive experiment. The global nature of the geometric phase can make the quantum manipulation more stable, which may find interesting applications in quantum devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a refined two-dimensional hybrid-model with self-consistent microwave absorption, we have investigated the change of plasma parameters such as plasma density and ionization rate with the operating conditions. The dependence of the ion current density and ion energy and angle distribution function at the substrate surface vs. the radial position, pressure and microwave power were discussed. Results of our simulation can be compared qualitatively with many experimental measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The energy, velocity, angle distribution of ions in magnetoactive electron cyclotron resonance plasma have been studied with a two-dimension hybrid mode. The dependence of these distribution functions versus position and pressure are discussed. Our simulation results are in good agreement with many experimental measurements. (C) 1997 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a 2-D hybrid model, the authors have found that external currents play an important role in the plasma parameters in the reactor. The plasma density, temperature and electrostatic potential would be significantly influenced by the applied external currents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electron spin-dependent transport properties have been theoretically investigated in two-dimensional electron gas (2DEG) modulated by the magnetic field generated by a pair of anti-parallel magnetization ferromagnetic metal stripes and the electrostatic potential provided by a normal metal Schottky stripe. It is shown that the energy positions of the spin-polarization extremes and the width of relative spin conductance excess plateau could be significantly manipulated by the electrostatic potential strength and width, as well as its position relative to the FM stripes. These interesting features are believed useful for designing the electric voltage controlled spin filters. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coherence evolution and echo effect of an electron spin, which is coupled inhomogeneously to an interacting one-dimensional finite spin bath via hyperfine-type interaction, are studied using the adaptive time-dependent density-matrix renormalization group method. It is found that the interplay of the coupling inhomogeneity and the transverse intrabath interactions results in two qualitatively different coherence evolutions, namely, a coherence-preserving evolution characterized by periodic oscillation and a complete decoherence evolution. Correspondingly, the echo effects induced by an electron-spin flip at time tau exhibit stable recoherence pulse sequence for the periodic evolution and a single peak at root 2 tau for the decoherence evolution, respectively. With the diagonal intrabath interaction included, the specific feature of the periodic regime is kept, while the root 2 tau-type echo effect in the decoherence regime is significantly affected. To render the experimental verifications possible, the Hahn echo envelope as a function of tau is calculated, which eliminates the inhomogeneous broadening effect and serves for the identification of the different status of the dynamic coherence evolution, periodic versus decoherence.