3 resultados para Condenser

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi-channel effect is important to understand transport phenomenon in phase change systems with parallel channels. In this paper, visualization studies were performed to study the multi-channel effect in a silicon triple-channel condenser with an aspect ratio of 0.04. Saturated water vapor was pumped into the microcondenser, which was horizontally positioned. The condenser was cooled by the air natural convention heat transfer in the air environment. Flow patterns are either the annular flow at high inlet vapor pressures, or a quasi-stable elongated bubble at the microchannel upstream followed by a detaching or detached miniature bubble at smaller inlet vapor pressures. The downstream miniature bubble was detached from the elongated bubble tip induced by the maximum Weber number there. It is observed that either a single vapor thread or dual vapor threads are at the front of the elongated bubble. A miniature bubble is fully formed by breaking up the vapor thread or threads. The transient vapor thread formation and breakup process is exactly symmetry against the centerline of the center channel. In side channels, the Marangoni effect induced by the small temperature variation over the channel width direction causes the vapor thread formation and breakup process deviating from the side channel centerline and approaching the center channel. The Marangoni effect further forces the detached bubble to rotate and approach the center channel, because the center channel always has higher temperatures, indicating the multi-channel effect. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new technique to fabricate silicon condenser microphone is presented. The technique is based on the use of oxidized porous silicon as sacrificial layer for the air gap and the heavy p~+-doping silicon of approximately 15μm thickness for the stiff backplate. The measured sensitivity of the microphone fabricated with this technique is in the range from -45dB (5.6mV/Pa) to -55dB (1.78mV/Pa) under the frequency from 500Hz to 10kHz, and shows a gradual increase at high frequency. The cut-off frequency is above 20kHz.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

对于第一类液滴(尺度远大于界面层的厚度),无论是远离固体壁面的液体球或附着在壁面上的球冠,其内外压力差(简称"附加压力")均适用经典Laplace公式,并且特别对球冠情况给出了一种新的整体性证明.还澄清有关争论:指出[曹治党、郭愚1999物理学报481823]一文对附壁面第一类液体球冠所推导出的附加压力与接触角有关的公式是错误的,而[闵敬春2002物理学报512730]是正确的。