16 resultados para Computer software maintenance

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

University of Paderborn; Fraunhofer Inst. Exp. Softw. Eng. (IESE); Chinese Academy of Science (ISCAS)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chinese Academy of Sciences (ISCAS)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Communication University of China; Wuhan University; James Madison University; Institute of Policy and Management, Chinese Academy of Sciences; IEEE Wuhan Section

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chinese Acad Sci, ISCAS Lab Internet Software Technologies

Relevância:

90.00% 90.00%

Publicador:

Resumo:

IEEE, IEEE Comp Soc, Tech Council Software Engn

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Numerical modeling of groundwater is very important for understanding groundwater flow and solving hydrogeological problem. Today, groundwater studies require massive model cells and high calculation accuracy, which are beyond single-CPU computer’s capabilities. With the development of high performance parallel computing technologies, application of parallel computing method on numerical modeling of groundwater flow becomes necessary and important. Using parallel computing can improve the ability to resolve various hydro-geological and environmental problems. In this study, parallel computing method on two main types of modern parallel computer architecture, shared memory parallel systems and distributed shared memory parallel systems, are discussed. OpenMP and MPI (PETSc) are both used to parallelize the most widely used groundwater simulator, MODFLOW. Two parallel solvers, P-PCG and P-MODFLOW, were developed for MODFLOW. The parallelized MODFLOW was used to simulate regional groundwater flow in Beishan, Gansu Province, which is a potential high-level radioactive waste geological disposal area in China. 1. The OpenMP programming paradigm was used to parallelize the PCG (preconditioned conjugate-gradient method) solver, which is one of the main solver for MODFLOW. The parallel PCG solver, P-PCG, is verified using an 8-processor computer. Both the impact of compilers and different model domain sizes were considered in the numerical experiments. The largest test model has 1000 columns, 1000 rows and 1000 layers. Based on the timing results, execution times using the P-PCG solver are typically about 1.40 to 5.31 times faster than those using the serial one. In addition, the simulation results are the exact same as the original PCG solver, because the majority of serial codes were not changed. It is worth noting that this parallelizing approach reduces cost in terms of software maintenance because only a single source PCG solver code needs to be maintained in the MODFLOW source tree. 2. P-MODFLOW, a domain decomposition–based model implemented in a parallel computing environment is developed, which allows efficient simulation of a regional-scale groundwater flow. The basic approach partitions a large model domain into any number of sub-domains. Parallel processors are used to solve the model equations within each sub-domain. The use of domain decomposition method to achieve the MODFLOW program distributed shared memory parallel computing system will process the application of MODFLOW be extended to the fleet of the most popular systems, so that a large-scale simulation could take full advantage of hundreds or even thousands parallel processors. P-MODFLOW has a good parallel performance, with the maximum speedup of 18.32 (14 processors). Super linear speedups have been achieved in the parallel tests, indicating the efficiency and scalability of the code. Parallel program design, load balancing and full use of the PETSc were considered to achieve a highly efficient parallel program. 3. The characterization of regional ground water flow system is very important for high-level radioactive waste geological disposal. The Beishan area, located in northwestern Gansu Province, China, is selected as a potential site for disposal repository. The area includes about 80000 km2 and has complicated hydrogeological conditions, which greatly increase the computational effort of regional ground water flow models. In order to reduce computing time, parallel computing scheme was applied to regional ground water flow modeling. Models with over 10 million cells were used to simulate how the faults and different recharge conditions impact regional ground water flow pattern. The results of this study provide regional ground water flow information for the site characterization of the potential high-level radioactive waste disposal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

重构是软件系统不断演化的关键之一,也是一项复杂而又困难的活动.传统的定位重构代码方法依赖开发者的观察和主观意识,耗时耗力,尤其在重构代码较多时.因此,提出了一套自动化定位重构的方法.该方法利用基于面向对象软件度量指标获取代码特征信息,使用相关性检验查验特征信息数据,应用主成分分析压缩和解释特征信息,应用聚类分析分类相似代码段,迅速准确定位重构.一个简单的实例表明该方法是简单有效的,并且优于传统方法.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

旱地作物需水量预报决策辅助系统是利用人工智能技术 ,在 Penman公式的基础上结合现有西北旱区的农学知识、模型以及经验进行系统集成而建立的智能化计算机软件系统 ,该系统是西北地区节水农业专家系统的一个子系统。在生产实践中可为陕西关中地区的冬小麦、夏玉米的栽培作出灌溉方案的决策咨询。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Univ SE Calif, Ctr Syst & Software Engn, ABB, Microsoft Res, IEEE, ACMSIGSOFT, N Carolina State Univ Comp Sci

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ACM SIGGRAPH; ACM SIGCHI

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Seismic While Drilling (SWD) is a new wellbore seismic technique. It uses the vibrations produced by a drill-bit while drilling as a downhole seismic energy source. The continuous signals generated by the drill bit are recorded by a pilot sensor attached to the top of the drill-string. Seismic wave receivers positioned in the earth near its surface receive the seismic waves both directly and reflection from the geologic formations. The pilot signal is cross-correlated with the receiver signals to compute travel-times of the arrivals (direct arrival and reflected arrival) and attenuate incoherent noise. No downhole intrusmentation is required to obtain the data and the data recording does not interfere with the drilling process. These characteristics offer a method by which borehole seismic data can be acquired, processed, and interpreted while drilling. As a Measure-While-Drill technique. SWD provides real-time seismic data for use at the well site . This can aid the engineer or driller by indicating the position of the drill-bit and providing a look at reflecting horizons yet to be encountered by the drill-bit. Furthermore, the ease with which surface receivers can be deployed makes multi-offset VSP economically feasible. First, this paper is theoretically studying drill-bit wavefield, interaction mode between drill-bit and formation below drill-bit , the new technique of modern signal process was applied to seismic data, the seismic body wave radiation pattern of a working roller-cone drill-bit can be characterized by theoretical modeling. Then , a systematical analysis about the drill-bit wave was done, time-distance equation of seismic wave traveling was established, the process of seismic while drilling was simulated using the computer software adaptive modeling of SWD was done . In order to spread this technique, I have made trial SWD modeling during drilling. the paper sketches out the procedure for trial SWD modeling during drilling , the involved instruments and their functions, and the trial effect. Subsurface condition ahead of the drill-bit can be predicted drillstring velocity was obtained by polit sensor autocorrelation. Reference decovolution, the drillstring multiples in the polit signal are removed by reference deconvolution, the crosscorrelation process enhance the signal-to-noise power ratio, lithologies. Final, SWD provides real-time seismic data for use at the well site well trajectory control exploratory well find out and preserve reservoirs. intervel velocity was computed by the traveltime The results of the interval velocity determination reflects the pore-pressure present in the subsurface units ahead of the drill-bit. the presences of fractures in subsurface formation was detected by shear wave. et al.