65 resultados para Computational geometry
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The Second Round of Oil & Gas Exploration needs more precision imaging method, velocity vs. depth model and geometry description on Complicated Geological Mass. Prestack time migration on inhomogeneous media was the technical basic of velocity analysis, prestack time migration on Rugged surface, angle gather and multi-domain noise suppression. In order to realize this technique, several critical technical problems need to be solved, such as parallel computation, velocity algorithm on ununiform grid and visualization. The key problem is organic combination theories of migration and computational geometry. Based on technical problems of 3-D prestack time migration existing in inhomogeneous media and requirements from nonuniform grid, parallel process and visualization, the thesis was studied systematically on three aspects: Infrastructure of velocity varies laterally Green function traveltime computation on ununiform grid, parallel computational of kirchhoff integral migration and 3D visualization, by combining integral migration theory and Computational Geometry. The results will provide powerful technical support to the implement of prestack time migration and convenient compute infrastructure of wave number domain simulation in inhomogeneous media. The main results were obtained as follows: 1. Symbol of one way wave Lie algebra integral, phase and green function traveltime expressions were analyzed, and simple 2-D expression of Lie algebra integral symbol phase and green function traveltime in time domain were given in inhomogeneous media by using pseudo-differential operators’ exponential map and Lie group algorithm preserving geometry structure. Infrastructure calculation of five parts, including derivative, commutating operator, Lie algebra root tree, exponential map root tree and traveltime coefficients , was brought forward when calculating asymmetry traveltime equation containing lateral differential in 3-D by this method. 2. By studying the infrastructure calculation of asymmetry traveltime in 3-D based on lateral velocity differential and combining computational geometry, a method to build velocity library and interpolate on velocity library using triangulate was obtained, which fit traveltime calculate requirements of parallel time migration and velocity estimate. 3. Combining velocity library triangulate and computational geometry, a structure which was convenient to calculate differential in horizontal, commutating operator and integral in vertical was built. Furthermore, recursive algorithm, for calculating architecture on lie algebra integral and exponential map root tree (Magnus in Math), was build and asymmetry traveltime based on lateral differential algorithm was also realized. 4. Based on graph theory and computational geometry, a minimum cycle method to decompose area into polygon blocks, which can be used as topological representation of migration result was proposed, which provided a practical method to block representation and research to migration interpretation results. 5. Based on MPI library, a process of bringing parallel migration algorithm at arbitrary sequence traces into practical was realized by using asymmetry traveltime based on lateral differential calculation and Kirchhoff integral method. 6. Visualization of geological data and seismic data were studied by the tools of OpenGL and Open Inventor, based on computational geometry theory, and a 3D visualize system on seismic imaging data was designed.
Resumo:
Digitization is the main feature of modern Information Science. Conjoining the digits and the coordinates, the relation between Information Science and high-dimensional space is consanguineous, and the information issues are transformed to the geometry problems in some high-dimensional spaces. From this basic idea, we propose Computational Information Geometry (CIG) to make information analysis and processing. Two kinds of applications of CIG are given, which are blurred image restoration and pattern recognition. Experimental results are satisfying. And in this paper, how to combine with groups of simple operators in some 2D planes to implement the geometrical computations in high-dimensional space is also introduced. Lots of the algorithms have been realized using software.
Resumo:
Because of information digitalization and the correspondence of digits and the coordinates, Information Science and high-dimensional space have consanguineous relations. With the transforming from the information issues to the point analysis in high-dimensional space, we proposed a novel computational theory, named High dimensional imagery geometry (HDIG). Some computational algorithms of HDIG have been realized using software, and how to combine with groups of simple operators in some 2D planes to implement the geometrical computations in high-dimensional space is demonstrated in this paper. As the applications, two kinds of experiments of HDIG, which are blurred image restoration and pattern recognition ones, are given, and the results are satisfying.
Resumo:
A novel image restoration approach based on high-dimensional space geometry is proposed, which is quite different from the existing traditional image restoration techniques. It is based on the homeomorphisms and "Principle of Homology Continuity" (PHC), an image is mapped to a point in high-dimensional space. Begin with the original blurred image, we get two further blurred images, then the restored image can be obtained through the regressive curve derived from the three points which are mapped form the images. Experiments have proved the availability of this "blurred-blurred-restored" algorithm, and the comparison with the classical Wiener Filter approach is presented in final.
Resumo:
A novel image restoration approach based on high-dimensional space geometry is proposed, which is quite different from the existing traditional image restoration techniques. It is based on the homeomorphisms and "Principle of Homology Continuity" (PHC), an image is mapped to a point in high-dimensional space. Begin with the original blurred image, we get two further blurred images, then the restored image can be obtained through the regressive curve derived from the three points which are mapped form the images. Experiments have proved the availability of this "blurred-blurred-restored" algorithm, and the comparison with the classical Wiener Filter approach is presented in final.
Resumo:
The boundary knot method (BKM) of very recent origin is an inherently meshless, integration-free, boundary-type, radial basis function collocation technique for the numerical discretization of general partial differential equation systems. Unlike the method of fundamental solutions, the use of non-singular general solution in the BKM avoids the unnecessary requirement of constructing a controversial artificial boundary outside the physical domain. The purpose of this paper is to extend the BKM to solve 2D Helmholtz and convection-diffusion problems under rather complicated irregular geometry. The method is also first applied to 3D problems. Numerical experiments validate that the BKM can produce highly accurate solutions using a relatively small number of knots. For inhomogeneous cases, some inner knots are found necessary to guarantee accuracy and stability. The stability and convergence of the BKM are numerically illustrated and the completeness issue is also discussed.
Resumo:
Finite element simulation of the Berkovich, Vickers, Knoop, and cone indenters was carried out for the indentation of elastic-plastic material. To fix the semiapex angle of the cone, several rules of equivalence were used and examined. Despite the asymmetry and differences in the stress and strain fields, it was established that for the Berkovich and Vickers indenters, the load-displacement relation can closely be simulated by a single cone indenter having a semiapex angle equal to 70.3degrees in accordance with the rule of the volume equivalence. On the other hand, none of the rules is applicable to the Knoop indenter owing to its great asymmetry. The finite element method developed here is also applicable to layered or gradient materials with slight modifications.
Resumo:
An investigation into the three-dimensional propagation of the transmitted shock wave in a square cross-section chamber was described in this paper, and the work was carried out numerically by solving the Euler equations with a dispersion-controlled scheme. Computational images were constructed from the density distribution of the transmitted shock wave discharging from the open end of the square shock tube and compared directly with holographic interferograms available for CFD validation. Two cases of the transmitted shock wave propagating at different Mach numbers in the same geometry were simulated. A special shock reflection system near the corner of the square cross-section chamber was observed, consisting of four shock waves: the transmitted shock wave, two reflection shock waves and a Mach stem. A contact surface may appear in the four-shock system when the transmitted shock wave becomes stronger. Both the secondary shock wave and the primary vortex loop are three-dimensional in the present case due to the non-uniform flow expansion behind the transmitted shock.
Resumo:
A global numerical model for shallow water flows on the cubed-sphere grid is proposed in this paper. The model is constructed by using the constrained interpolation profile/multi-moment finite volume method (CIP/MM FVM). Two kinds of moments, i.e. the point value (PV) and the volume-integrated average (VIA) are defined and independently updated in the present model by different numerical formulations. The Lax-Friedrichs upwind splitting is used to update the PV moment in terms of a derivative Riemann problem, and a finite volume formulation derived by integrating the governing equations over each mesh element is used to predict the VIA moment. The cubed-sphere grid is applied to get around the polar singularity and to obtain uniform grid spacing for a spherical geometry. Highly localized reconstruction in CIP/MM FVM is well suited for the cubed-sphere grid, especially in dealing with the discontinuity in the coordinates between different patches. The mass conservation is completely achieved over the whole globe. The numerical model has been verified by Williamson's standard test set for shallow water equation model on sphere. The results reveal that the present model is competitive to most existing ones. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
A simple geometry model for tortuosity of flow path in porous media is proposed based on the assumption that some particles in a porous medium are unrestrictedly overlapped and the others are not. The proposed model is expressed as a function of porosity and there is no empirical constant in this model. The model predictions are compared with those from available correlations obtained numerically and experimentally, both of which are in agreement with each other. The present model can also give the tortuosity with a good approximation near the percolation threshold. The validity of the present tortuosity model is thus verified.
Resumo:
An approximate model, a fractal geometry model, for the effective thermal conductivity of three-phase/unsaturated porous media is proposed based on the thermal-electrical analogy technique and on statistical self-similarity of porous media. The proposed thermal conductivity model is expressed as a function of porosity (related to stage n of Sierpinski carpet), ratio of areas, ratio of component thermal conductivities, and saturation. The recursive algorithm for the thermal conductivity by the proposed model is presented and found to be quite simple. The model predictions are compared with the existing measurements. Good agreement is found between the present model predictions and the existing experimental data. This verifies the validity of the proposed model. (C) 2004 American Institute of Physics.
Resumo:
In order to obtain an overall and systematic understanding of the performance of a two-stage light gas gun (TLGG), a numerical code to simulate the process occurring in a gun shot is advanced based on the quasi-one-dimensional unsteady equations of motion with the real gas effect,;friction and heat transfer taken into account in a characteristic formulation for both driver and propellant gas. Comparisons of projectile velocities and projectile pressures along the barrel with experimental results from JET (Joint European Tons) and with computational data got by the Lagrangian method indicate that this code can provide results with good accuracy over a wide range of gun geometry and loading conditions.