2 resultados para Compostos de flúor

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: To assess the diversity of antibiotic-resistant bacteria and their resistance genes in typical maricultural environments. Methods nand Results: Multidrug-resistant bacteria and resistance genes from a mariculture farm of China were analysed via cultivation and polymerase chain reaction (PCR) methods. Oxytetracycline (OTC)-resistant bacteria were abundant in both abalone and turbot rearing waters, accounting for 3.7% and 9.9% of the culturable microbes. Multidrug resistance was common, with simultaneous resistance to OTC, chloramphenicol and ampicillin the most common resistance phenotype. 16S rDNA sequence analyses indicate that the typical resistant isolates belonged to marine Vibrio, Pseudoalteromonas or Alteromonas species, with resistance most common in Vibrio splendidus isolates. For OTC resistance, tet(A), tet(B) and tet(M) genes were detected in some multidrug-resistant isolates, with tet(D) being the most common molecular determinant. For chloramphenicol resistance, cat II was common, and floR was also detected, especially in marine Pseudoalteromonas strains. Conclusions: There is the risk of multidrug-resistant bacteria contamination in mariculture environments and marine Vibrio and Pseudoalteromonas species serve as reservoirs of specific antibiotic resistance determinants. Significance and Impact of the Study: This paper and similar findings from Korea and Japan indicate the potential for widespread distribution of antibiotic resistance genes in mariculture environments from the East Asian region of the world.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to gain an understanding of the diversity and distribution of antimicrobial-resistant bacteria and their resistance genes in maricultural environments, multidrug-resistant bacteria were screened for the rearing waters from a mariculture farm of China. Both abalone Haliotis discus hannai and turbot Scophthalmus maximus rearing waters were populated with abundant chloramphenicol-resistant bacteria. These bacteria were also multidrug resistant, with Vibrio splendidus and Vibrio tasmaniensis being the most predominant species. The chloramphenicol-resistance gene cat II, cat IV or floR could be detected in most of the multidrug-resistant isolates, and the oxytetracycline-resistance gene tet(B), tet(D), tet(E) or tet(M) could also be detected for most of the isolates. Coexistence of chloramphenicol- and oxytetracycline-resistance genes partially explains the molecular mechanism of multidrug resistance in the studied maricultural environments. Comparative studies with different antimicrobial agents as the starting isolation reagents may help detect a wider diversity of the antimicrobial-resistant bacteria and their resistance genes. (C) 2009 Elsevier Ltd. All rights reserved.