6 resultados para Common Scrambling Algorithm Stream Cipher

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We focus on the relationship between the linearization method and linear complexity and show that the linearization method is another effective technique for calculating linear complexity. We analyze its effectiveness by comparing with the logic circuit method. We compare the relevant conditions and necessary computational cost with those of the Berlekamp-Massey algorithm and the Games-Chan algorithm. The significant property of a linearization method is that it needs no output sequence from a pseudo-random number generator (PRNG) because it calculates linear complexity using the algebraic expression of its algorithm. When a PRNG has n [bit] stages (registers or internal states), the necessary computational cost is smaller than O(2n). On the other hand, the Berlekamp-Massey algorithm needs O(N2) where N ( 2n) denotes period. Since existing methods calculate using the output sequence, an initial value of PRNG influences a resultant value of linear complexity. Therefore, a linear complexity is generally given as an estimate value. On the other hand, a linearization method calculates from an algorithm of PRNG, it can determine the lower bound of linear complexity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

利用复合离散混沌系统的特性,提出了两个基于复合离散混沌系统的序列密码算法.算法的加密和解密过程都是同一个复合离散混沌系统的迭代过程,取迭代的初始状态作为密钥,以明文序列作为复合系统的复合序列,它决定了迭代过程中迭代函数的选择(或明文与密钥),然后将迭代轨迹粗粒化后作为密文.由于迭代对初始条件的敏感性和迭代函数选择的随机性,密钥、明文与密文之间形成了复杂而敏感的非线性关系,而且密文和明文的相关度也很小,从而可以有效地防止密文对密钥和明文信息的泄露.复合离散混沌系统均匀的不变分布还使密文具有很好的随机特性.经分析表明,系统具有很高的安全性.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

提出了一种计算单mod 2~n加运算与F_2上的异或运算的“异或差值”概率分布的有效算法,该算法的计算复杂度为O((n-1)/2),与Maximov的结果相比计算复杂度更低.对于多mod 2~n加运算的情形,给出了多mod 2~n加运算与F_2上的异或(XOR)运算的“异或差值”的递推计算公式.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The alternate combinational approach of genetic algorithm and neural network (AGANN) has been presented to correct the systematic error of the density functional theory (DFT) calculation. It treats the DFT as a black box and models the error through external statistical information. As a demonstration, the AGANN method has been applied in the correction of the lattice energies from the DFT calculation for 72 metal halides and hydrides. Through the AGANN correction, the mean absolute value of the relative errors of the calculated lattice energies to the experimental values decreases from 4.93% to 1.20% in the testing set. For comparison, the neural network approach reduces the mean value to 2.56%. And for the common combinational approach of genetic algorithm and neural network, the value drops to 2.15%. The multiple linear regression method almost has no correction effect here.