9 resultados para Colletotrichum

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

在云南景谷芒果种植区, 芒果炭疽病对芒果树嫩叶、嫩梢、花穗和果实为害率分别为85.7%、63.4%、77.1%和73.3%。风雨和昆虫媒介是传播的主要方式。发生为害最适温度为22℃--25℃, 相对湿度为85%--100%。该病在景谷种植区全年均可发生为害, 主要为害在发生期。发生前期为害, 是花穗干瘪和幼果掉落的原因之一。采取综合防治措施, 特别在发生前期适时防治, 可控制发生为害。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文以桃(Prunus persica L. cv. Bayuecui.)栽培种‘八月脆’和芒果(Mangifera indica L.)栽培种‘圣心’为材料,研究外源草酸对采后果实的生理生化效应及其作用机理,为果实贮藏保鲜提供新方法。采后桃果实用1、5 mM的草酸溶液浸果10 min,以浸水10 min为对照,然后在常温下贮藏,测定果实在贮藏期间对草酸处理的一些生理生化反应。芒果经采后杀菌剂(post- P)、采后草酸(post-OA)、采前+采后草酸(pre-OA + post-OA)、采前Ca + 采后草酸处理(pre-Ca + post-OA)处理,以采后浸水为对照,然后分别将果实在常温(25 C)、低温(14 C)和控制性气调(3% CO2 + 2% O2 ,14 ± 1 C)下贮藏,测定草酸处理对芒果的成熟进程、病情发展及其相关生理指标的影响。研究结果表明如下: 1.与对照相比,草酸处理的桃果实在贮藏期间果实的电解质渗漏量和呼吸速率降低、果实硬度高、果实的抗氧化酶(超氧化物岐化酶、SOD;过氧化物酶,POD;过氧化氢酶、CAT;抗坏血酸过氧化物酶、APX)和多酚氧化酶(PPO)活性提高、脂氧合酶(LOX)活性降低。同时,在贮藏后期,果实的活性氧自由基(ROS)产量(超氧阴离子、O2.;过氧化氢、H2O2)和丙二醛(MDA)含量降低。草酸的这些生理效应有利于保持膜的完整性和延缓桃果实的成熟;草酸诱导POD、SOD、PPO活性可能有助于提高采后果实的抗病性。 2.外源5、10 mM浓度的草酸(pH值中和或不中和)对芒果炭疽病原菌(Colletotrichum gloeosporioides)孢子萌发和菌丝生长均表现出显著的抑制作用。这种作用不仅与草酸降低培养基(PDA)的pH值相关,而且与草酸独特的化学特性相关。 3.在常温、低温和控制性气调贮藏下,采后草酸、采前 + 采后草酸、采前Ca + 采后草酸处理均能有效减缓芒果果实的软化速率,延缓芒果的成熟进程,降低芒果的病情指数,同时改善芒果成熟时的表皮着色,对果实完全后熟时的可溶性固形物(SSC)、可滴定酸(TA)含量、果肉口感均没有产生负面的影响。 4.草酸处理增强芒果细胞膜的稳定性,诱导提高芒果抗氧化酶活性,特别是提高果皮SOD、APX活性,降低LOX活性,以及降低果皮O2.、H2O2 和果肉H2O2含量,抑制采后果实的乙烯生物合成。这些生理生化效应与延缓芒果的成熟衰老和提高果实的抗病性相关。 5. 采后草酸、采前 + 采后草酸和采前Ca + 采后草酸处理表现出高效低廉、无毒无副作用、易操作等优点,是芒果采后贮藏保鲜的可供选、具有实际应用前景的新方法。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

植物源杀菌剂的开发应用以及从植物中寻找杀菌活性物质作为先导化合物,是目前杀菌研究领域的热点之一。本文以蓼科植物虎杖(Polygonum cuspidatum Sieb.et Zucc.) 为材料,研究了虎杖提取物的杀菌活性和作用机理,确定了虎杖中的有效杀菌活性成分,并以此为先导化合物进行了衍生物合成与结构活性关系的研究。 不同溶剂提取物制备与杀菌活性测定结果表明,乙醇适合作为虎杖植物杀菌剂的提取溶剂,提取率高,对多种植物病原真菌具有广谱的杀菌和抑菌活性,除对黄瓜白粉病(Sphaerotheca fuliginea)表现出很好的防治效果外,对苹果腐烂病菌(Valsa mali)、玉米小斑病菌(Helminthosporium maydis)、葡萄炭疽病菌(Colletotrichum gloeosporioides)、小麦赤霉病菌(Fusarium graminearum)、油菜菌核病菌(Sclerotinia sclerotiorum)、水稻纹枯病菌(Rhizoconia solani)等也具有很好的抑制作用。虎杖回流提取物对黄瓜白粉病的杀菌作用以保护作用为主,兼具一定的治疗作用,并且具有一定的内吸活性,持效期约为4-7 d。温室试验结果表明,虎杖乙醇回流提取物10%可溶性液剂对黄瓜白粉病的EC90值为172.83 mg/L,田间小区试验表明该制剂在800-1600 mg/L的浓度下,对黄瓜白粉病的防效达到76.3-93.4%,具有较好的应用前景。 对苹果腐烂病菌的抑菌作用机理表明,虎杖乙醇提取物对该病原菌有明显的抑制作用,能够抑制蛋白质、葡萄糖等菌体细胞内物质的合成,从而使病菌代谢速度减慢,抑制其生长。虎杖提取物还能够使几丁质酶和β-1,3葡聚糖酶这两种细胞壁相关水解酶的活性升高,降解细胞壁而破坏菌体结构,使菌体自溶。 过测定虎杖乙醇回流提取物对黄瓜体内等一些防御酶和病程相关蛋白活性的影响,表明在40 mg/L和400 mg/L浓度下,虎杖乙醇提取物能够使黄瓜叶片内的过氧化物酶(POD)、多酚氧化酶(PPO)、苯丙氨酸解氨酶(PAL)、几丁质酶等不同程度的升高,从而在一定程度上提高植物对病原真菌的抗病能力。 通过生物活性跟踪测定以及pH梯度提取法确定了虎杖中的主要杀菌活性成分为蒽醌类化合物大黄素(emodin)和大黄素甲醚(physcion),结构通过了HPLC-MS和1H NMR确认,并且通过HPLC确定了虎杖乙醇回流提取物中二者的含量分别为3.28%和1.11%。 以虎杖中的有效成份之一的大黄素为原料,通过羟基的甲基化反应合成了包括已知物大黄素甲醚在内的11个大黄素衍生物,其中5个化合物为首次报道,并进行了初步结构活性关系研究。结果表明通过对大黄素3-OH位置以短直链烷基取代,其衍生物对黄瓜白粉病的活性大大提高,其中以甲基取代的衍生物大黄素甲醚的活性为母体大黄素的16.7倍,而以取代苄基修饰的衍生物的活性没有明显提高。一些目标化合物的活性明显优于三唑酮。研究中还意外发现大黄素的甲基化衍生物三甲氧基大黄素在4000 mg/L时能够明显抑制甜菜夜蛾幼虫的取食与生长发育,而大黄素和大黄素甲醚则无此作用。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

毛壳菌属很多种类具有重要生防价值,其生防机理包括对植物病原真菌的重寄生作用、诱导植物产生抗病性、产生抗真菌活性的次生代谢产物等。迄今,学界对毛壳菌的研究主要集中在毛壳菌的生防机理,毛壳菌活性次生代谢产物的分离等方面。本研究致力于产抗生素的毛壳菌的种间原生质体融合,从产抗生素毛壳菌菌株的筛选开始,进而对产抗生素的角毛壳菌进行诱变选育,最终用产不同抗生素的角毛壳菌与球毛壳菌进行种间原生质体融合。主要有以下五方面研究结果。 1、毛壳菌抗真菌活性物质产生菌株的筛选:不同毛壳菌菌株发酵液采用琼脂扩散法对植物病原真菌进行抑菌活性试验,结果显示,菌株CH08和CH23的发酵液对芒果炭疽、苹果炭疽和马铃薯晚疫菌具有抑制作用。菌株CH16和CH17的发酵液对芒果炭疽菌、苹果炭疽菌有抑制作用。菌株CH21发酵液对辣椒炭疽菌和西瓜枯萎菌有抑制作用。经形态学研究,菌株CH08、CH16、CH17和CH23鉴定为球毛壳菌,菌株CH21鉴定为角毛壳菌。对角毛壳菌与球毛壳菌菌株发酵液抑菌谱比较,发现角毛壳菌与球毛壳菌发酵液具有明显不同的抑菌谱,表明角毛壳菌与球毛壳菌产生不同的抗真菌活性物质。 2、角毛壳菌(CH21)和球毛壳菌(CH08)原生质体制备和再生条件研究:考察了菌龄、酶浓度、稳渗剂及其浓度、酶解温度、酶解时间及再生培养基对原生质体制备和再生的影响。用菌龄为生长54 h的角毛壳菌菌丝,以0.06 M磷酸缓冲液(pH6.0)配制成含蜗牛酶15 mg/ml、溶壁酶10 mg/ml、蔗糖0.6 mol/L的酶解液,30℃酶解1.5 h,原生质体释放量2.02×107个/g;以PDA为再生培养基,0.7 mol/L的蔗糖再生稳渗剂,再生率可达51.45%。用菌龄为生长48 h的球毛壳菌菌丝,以0.06 M磷酸缓冲液(pH6.0)配制成含蜗牛酶15 mg/ml、溶壁酶10 mg/ml、蔗糖0.6 mol/L的酶解液,30℃酶解1 h,原生质体释放量达1.57×108个/g;以PDA为再生培养基,0.7 mol/L的蔗糖为再生稳渗剂,再生率可达41.48%。 3、角毛壳菌(CH21)原生质体紫外诱变选育:以CH21为出发菌株,制备原生质体进行紫外诱变,诱变条件为:15 w紫外灯,距离30 cm,照射90 s,致死率80%~85%。建立了诱变菌株初筛的双层平板筛选模型。经平板初筛和摇瓶复筛,获得一株突变菌株CH21-I-402,其发酵液抑菌活性较出发菌株提高18.3%。 4、抗性标记菌株的获得:菌株CH21-I-402和CH08抗生素药敏试验表明, CH21-I-402菌株对潮霉素有抗性、对G418(Geneticin)敏感,菌株CH08对潮霉素和G418都敏感。根癌农杆菌EHA105介导的新霉素磷酸转移酶基因转化球毛壳菌,经PCR检测,新霉素磷酸转移酶基因成功转化进菌株CH08-GR70,CH08-GR120。转化子对G418抗性提高3~4倍,对潮霉素仍然比较敏感。 5、以G418和潮霉素抗性为筛选标记的原生质体融合与融合菌株AFLP分析:制备角毛壳菌CH21-I-402和球毛壳菌CH08-GR70原生质体,以35%的PEG6000为助融剂进行原生质体融合,以65 μg/ml的潮霉素和60 μg/ml G418为抗性筛选标记,获得46个再生菌株。再生菌株连续传代5代后,再生菌株表现出多种形态类型。利用AFLP技术对再生菌株及亲本菌株基因组DNA分析表明,再生菌株PF1、PF26为融合菌株。抑菌活性测试表明,融合菌株PF26发酵液对芒果炭疽菌和苹果轮纹菌有强的抑制作用,且抑菌活性比亲本球毛壳菌明显提高。 Chaetomium spp. have great potentials as biocontrol agents against a range of plant pathogens on the basis of its mycoparasitism, induced plant disease resistance, production of antifungal metabolites, and so on. Previous researches on C. spp. mostly focused on the mechanisms of its biocontrol and the isolation of secondary metabolites. In this study, screening antifungal C. spp., mutation breeding of C. cupreum and interspecies protoplast fusion between C. cupreum and C. globosum were carried out, respectively. The corresponding results are as follows: Firstly, among more than 40 C. spp., the strains produced anti-fungal antibiotics were screened by agar diffusion experiments. Results showed that both CH08 and CH23 had inhibition against Colletotrichum gloeosporioides, Cladosporium fulvum, and Phytophthora infestans. Both CH16 and CH17 had inhibition against Colletotrichum gloeosporioides and Cladosporium fulvum. In addition, CH21 exhibited anti-fungal activity against Fusarium oxysporum f. sp niveum and Colletotrichum capsici. Furthermore, CH08, CH16, CH17 and CH23 were identified as C. globosum, CH21 was proved to be C. cupreum based on morphology. The comparison of the anti-fungal spectrum between C. cupreum and C. globosum, showed they could produce different antibiotics. Secondly, specified protocols for preparing and regenerating protoplasts from mycelia of C. cupreum CH21 and C. globosum CH08 were studied. The effects of the age mycelia, the concentration of enzyme, digestion temperature and time, kinds of osmotic stabilizer and regeneration medium on protoplasts preparation and regeneration were all optimized, respectively. In one protocol, with 15 mg/mL snailase, 10 mg/mL lywallzyme, 0.6 M sucrose, in 0.06 M phosphate buffer (pH6.0), and digested for 1.5 h at 30 ºC, 2.02×107 protoplasts from each gram mycelia were obtained from cultures of C. cupreum CH21 grown in potato dextrose broth (PDB) medium for 54 h. And when 0.7 M sucrose was used as osmotic stabilizer in the regeneration medium OPDA (potato dextrose agar with osmotic stabilize), the regeneration efficiency of protoplasts was 51.45%. In another protocol, with 15 mg/mL snailase, 10 mg/mL lywallzyme, 0.6 M sucrose, in 0.06 M phosphate buffer (pH6.0), and digested for 1 h at 30 ºC, 1.57×108 protoplasts from each gram mycelia were obtained from cultures of C. globosum CH08 grown in PDB for 48 h. And when 0.7 M sucrose was used as osmotic stabilizer in the regeneration medium OPDA, the regeneration efficiency of protoplasts was 41.48%. Thirdly, the mutagenesis conditions and secondary screening model of C. cupreum CH21 were explored. An 80% to 85% death rate could be achieved when the protoplasts of C. cupreum CH21 were irradiated by 15 w UV lamp from 30 cm distance for 90 s. In addition, the doublelayer plate’s method for the primary screening of high-producing antibiotics strains was established. A high yielding antibiotic mutant CH21-I-402 was obtained through the primary screening on plate and the secondary selection in Erlenmeyer flask, compared to the original CH21 strain, the antifungal activity of the mutant CH21-I-402 was increased by 18.3%. Fourth, the sensitivity to antibiotics of both C. cupreum CH21-I-402 and C. globusm CH08 was detected. Results showed C. cupreum CH21-I-402 was sensitive to G418 (Geneticin) (Gs) and resistant to Hygromycin B(Hr), and C. globusm CH08 was sensitive to both G418 (Geneticin) (Gs) and Hygromycin B(Hs). At the same time, neomycin phosphotransferase II (npt II) gene was transformed into C. globusm CH08(Gs, Hs) mediated by Agrobacterium tumefaciens EHA105, and the npt II gene was verified by polymerase chain reaction in resistance to G418 strains CH08-GR70 and CH08-GR120. The transformants still showed sensitive to Hygromycin B(Hs). Finally, a selection system for hybrids was set up by interspecies protoplast fusion between C. cupreum and C. globusm using dominant selective drug resistance markers. At first, protoplasts of C. cupreum CH21-I-402 (Hr, Gs) and C. globusm CH08-GR70 (Hs, Gr) were prepared, then the protoplasts were fused in the presence of 35% polyethylene glycol 6000 and regenerated on OPDA medium with 65 μg/ml Hygromycin B and 60μg/ml G418, at last 46 colonies with Hr and Gr were obtained. Even after 5 generations’ subculture, most of the colonies displayed significant difference in taxonomic characteristics with their parental strains. Regenerated strains PF1 and PF26 were confirmed as fusants by amplified fragment length polymorphisms analysis with the genomic DNA as the model. PF26 showed higher inhibitory activity against Colletotrichum gloeosporioides and Macrophoma kuwatsukai than that of the parental strain C. globusm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, 20 kinds of different 2-(alpha-arylamino phosphonate)-chitosan (2-alpha-AAPCS) were prepared by different Schiff bases of chitosan (CS) reacted with di-alkyl phosphite in benzene solution. The structures of the derivatives (2-alpha-AAPCS) were characterized by FT-IR spectroscopy and elemental analysis. In addition, the antifungal activities of the derivatives against four kinds of fungi were evaluated in the experiment. The results indicated that all the prepared 2-alpha-AAPCS had a significant inhibiting effect on the investigated fungi when the derivatives concentration ranged from 50 to 500 mu g mL(-1). Furthermore, the antifungal activities of the derivatives increased with increasing the molecular weight and concentration. And the antifungal activities of the derivatives were affected by their dimensional effect and charge density. Besides, the rule and mechanism of the antifungal activities of them were discussed in this paper. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Schiff bases of chitosan, N-substituted chitosan, and quaternized chitosan were synthesized and their antifungal properties were analyzed against Botrytis cinerea Pers. (B. cinerea pers.) and Colletotrichum lagenarium (Pass) Ell.et halst (C. lagenarium (Pass) Ell.et halst) based on the method of D. Jasso de Rodriguez and co-workers. The results showed that quaternized chitosan had better inhibitory properties than chitosan, Schiff bases of chitosan, and N-substituted chitosan. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quaternized chitosan derivatives with different molecular weights were synthesized in the laboratory. Subsequent experiments were conducted to test their antifungal activities against Botrytis cinerea Pers. (B. cinerea pers.) and Colletotrichum lagenarium (Pass) Ell.et halst (C. lagenarium (Pass) EII.et halst). Our results indicate that quaternized chitosan derivatives have stronger antifungal activities than chitosan. Furthermore, quaternized chitosan derivatives with high molecular weight are shown to have even stronger antifungal activities than those with low molecular weight. (c) 2007 Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quatemized chitosan: N-(2-hydroxyl-phenyl)-NN-dimethyl chitosan (NHPDCS), N-(5-chloro-2-hydroxyl-phenyl)-NN-dimethyl chitosan (NCHPDCS), N-(2-hydroxyl-5-nitro-phenyl)-NN-dimethyl chitosan (NHNPDCS) and N-(5-bromic-2-hydroxyl-phenyl)-NN-dimethyI chitosan (NBHPDCS) were synthesized and their antifungal activities against Botrytis cinerea Pers. (B. cinerea Pers.) and Colletotrichum lagenarium (Pass) Ell.et halst (C. lagenarium (Pass) Ellet halst) were investigated. The results indicated that the quaternized chitosan derivatives had better inhibitory effects than chitosan, and the antifungal activities should be affected by the cation in these compounds. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three different acyl thiourea derivatives of chitosan (CS) were synthesized and their structures were characterized by FT-IR spectroscopy and elemental analysis. The antimicrobial behaviors of CS and its derivatives against four species of bacteria (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Sarcina) and four crop-threatening pathogenic fungi (Alternaria solani, Fusarium oxysporum f. sp. vasinfectum, Colletotrichum gloeosporioides (Penz.) Saec, and Phyllisticta zingiberi) were investigated. The results indicated that the antimicrobial activities of the acyl thiourea derivatives are much better than that of the parent CS. The minimum value of MIC and MBC of the derivatives against E coli was 15.62 and 62.49 mu g/mL, respectively. All of the acyl thiourea derivatives had a significant inhibitory effect on the fungi in concentrations of 50 - 500 mu g/mL; the maximum inhibitory index was 66.67%. The antifungal activities of the chloracetyl thiourea derivatives of CS are noticeably higher than the acetyl and benzoyl thiourea derivatives. The degree of grafting of the acyl thiourea group in the derivatives was related to antifungal activity; higher substitution resulted in stronger antifungal activity. (c) 2007 Elsevier Ltd. All rights reserved.