45 resultados para Cold-formed steel framing

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

40.00% 40.00%

Publicador:

Resumo:

在四辊冷轧试验机和Gleeble-1500试验机上进行了热轧微碳钢板的冷轧和退火试验。用D/max-RC衍射仪测量了试样的,/”层织构,并用Roe软件进行了ODF分析。研究表明,所研究的热轧微碳深冲板压下率约为75%,退火升温速度为20-40℃/h时,试样为{111}织构特征;压下率较大(80%)时,退火织构为较弱的{111}组分。无论{111}织构还是非{111}织构都是在形核阶段开始形成,在晶粒长大优先长大,受到定向形核和选择生长双重机制的作用。

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electron beam surface remelting has been carried out on AISI D2 cold-worked die steel. The microstructure and hardening behavior of the electron beam surface remelted AISI D2 cold-worked die steel have been studied by means of optical microscopy and Vickers hardness testing. It was found that AISI D2 steel can be successfully surface hardened by electron beam surface remelting. This surface hardening effect can be attributed to microstructural refinement following electron beam surface remelting. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Jacket platform is the most widely used offshore platform. Steel rubber vibration isolator and damping isolation system are often used to reduce or isolate the ice-induced and seismic-induced vibrations. The previous experimental and theoretical studies concern mostly with dynamic properties, vibration isolation schemes and vibration-reduction effectiveness analysis. In this paper, the experiments on steel rubber vibration isolator were carried out to investigate the compressive properties and fatigue properties in different low temperature conditions. The results may provide some guidelines for design of steel rubber vibration isolator for offshore platform in a cold environment, and for maintenance and replacement of steel rubber vibration isolator, and also for fatigue life assessment of the steel rubber vibration isolator. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Composite coatings were obtained on A3 steel by hot dipping aluminum(HDA) at 720 ℃ for 6 min and micro-plasma oxidation(MPO) in alkali electrolyte. The surface morphology, element distribution and interface structure of composite coatings were studied by means of XRD, SEM and EDS. The results show that the composite coatings obtained through HDA/MPO on A3 steel consist of four layers. From the surface to the substrate, the layer is loose Al2O3 ceramic, compact Al2O3 ceramic, Al and FeAl intermetallic compound layer in turn. The adhesions among all the layers are strengthened because the ceramic layer formed at the Al surface originally, FeAl intermetallic compound layer and substrate are combined in metallurgical form through mutual diffusion during HDA process.Initial experiment results disclose that the anti-corrosion performance and wear resistance of composite coating are obviously improved through HDA/MPO treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ceramic coatings were formed by plasma electrolytic oxidation (PEO) on aluminized steel. Characteristics of the average anodic voltages versus treatment time were observed during the PEO process. The micrographs, compositions and mechanical properties of ceramic coatings were investigated. The results show that the anodic voltage profile for processing of aluminized steel is similar to that for processing bulk Al alloy during early PEO stages and that the thickness of ceramic coating increases approximately linearly with the Al layer consumption. Once the Al layer is completely transformed, the FeAl intermetallic layer begins to participate in the PEO process. At this point, the anodic voltage of aluminized steel descends, and the thickness of ceramic coating grows more slowly. At the same time, some micro-cracks are observed at the Al2O3/FeAl interface. The final ceramic coating mainly consists of gamma-Al2O3, mullite, and alpha-Al2O3 phases. PEO ceramic coatings have excellent elastic recovery and high load supporting performance. Nanohardness of ceramic coating reaches about 19.6 GPa. (c) 2007 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental trials of autogenous deep penetration welding between dissimilar cast Ni-based superalloy K418 and alloy steel 42CrMo flat plates with 5.0 mm thickness were conducted using a 3 kW continuous wave (CW) Nd:YAG laser. The influences of laser output power, welding velocity and defocusing distance on the morphology, welding depth and width as well as quality of the welded seam were investigated. Results show that full keyhole welding is not formed on both K4.18 and 42CrMo side, simultaneously, due to the relatively low output power. Partial fusion is observed on the welded seam near 42CrMo side because of the large disparity of thermal-physical and high-temperature mechanical properties of these two materials. Tile rnicrohardness of the laser-welded joint was also examined and analyzed. It is suggested that applying negative defocusing in the range of Raylei length can increase the welding depth and improve tile coupling efficiency of the laser materials interaction. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

EXPERIMENTS carried out using a split Hopkinson torsional bar have shown that only one shear band develops in specimens of hot rolled steel which break during testing. We observed, however, that in specimens which were not deformed to failure, several fine shear bands appeared. We believe that these formed during the loading cycle before the appearance of the final shear band and were not due to the effect of unloading. So we developed a numerical model to study the evolution of shear banding from several finite amplitude disturbances (FADs) in both temperature and strain rate. This numerical model reveals the detailed processes by which the FADs evolve into a fully developed shear band and suggests that beyond instability, the so-called shear banding process consists of two stages: inhomogeneous shearing and true shear-banding. The latter is characterized by the collapse of the stress and an abrupt increase of the local shear strain rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Composite coatings were obtained on A3 steel by hot dipping aluminum(HAD) at 720 degreesC for 6 min and micro-plasma oxidation (MPO) in alkali electrolyte. The surface morphology, element distribution and interface structure of composite coatings were studied by means of XRD, SEM and EDS. The results show that the composite coatings obtained through HAD/MPO on A3 steel consist of four layers. From the surface to the substrate, the layer is loose Al2O3 ceramic, compact Al2O3 ceramic, At and FeAl intermetallic compound layer in turn. The adhesions among all the layers are strengthened because the ceramic layer formed at the At surface originally, FeAl intermetallic compound layer and substrate are combined in metallurgical form through mutual diffusion during HAD process. Initial experiment results disclose that the anti-corrosion performance and wear resistance of composite coating are obviously improved through HAD/MPO treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anticorrosion performances of polyaniline emeraldine base/epoxy resin (EB/ER) coating on mild steel in 3.5% NaCl solutions of various pH values were investigated by electrochemical impedance spectroscopy (EIS) for 150 days. In neutral solution (pH 6.1), EB/ER coating offered very efficient corrosion protection with respect to pure ER coating, especially when EB content was 5-10%. The impedance at 0.1 Hz of the coating increased in the first 1-40 immersion days and then remained constant above 10(9) Omega cm(2) until 150 days, which in combination with the observation of a Fe2O3/Fe3O4 passive film formed on steel confirmed that the protection of EB was mainly anodic. In acidic or basic solution (pH 1 or 13), EB/ER coating also performed much better than pure ER coating. However, these media weakened the corrosion resistance due to breakdown of the passive film or deterioration of the ER binder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyaniline emeraldine base/epoxy resin (EB/ER) coating was investigated for corrosion protection of mild steel coupled with copper in 3.5% NaCl solution. EB/ER coating with 5-10 wt% EB had long-term corrosion resistance on both uncoupled steel and copper due to the passivation effect of EB on the metal surfaces. During the 150 immersion days, the impedance at 0.1 Hz for the coating increased in the first 1-40 days and subsequently remained constant above 10(9) Omega cm(2), whereas that for pure ER coating fell below 10(6) Omega cm(2) after only 30 or 40 days. Immersion tests on coated steel-copper galvanic couple showed that EB/ER coating offered 100 times more protection than ER coating against steel dissolution and coating delamination on copper, which was mainly attributed to the passive metal oxide films formed by EB blocking both the anodic and cathodic reactions. Salt spray tests showed that 100 mu m EB/ER coating protected steel-copper couple for at least 2000 h.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 700-year record (1.0-1.5 a resolution) of the East Asian winter monsoon (EAWM), based on grain-size analysis and AMS(14)C dating of Core EC2005 from the inner-shelf mud wedge of the East China Sea (ECS), was compared with the Dongge stalagmite delta O-18 record during the mid-Holocene. The upper muddy section of Core EC2005 has been formed mainly by suspended sediments derived from the Changjiang (Yangtze) River mouth since 7.3 ka BP. High precipitation and a strengthened EAWM might have played key roles in the high sedimentation rate (1 324-1 986 cm/ka) between 5.9-5.2 ka BP. The EAWM strengthened when the Asian summer monsoon weakened, especially around 5 500 a BP, which corresponded to a worldwide cold event. The EAWM during the mid-Holocene shows statistically significant solar periodicities at 62 and 11 a. The 5 500 a BP cold event might be resulted from orbital forcing and changes in solar activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The theoretical solution of the model of the Northern Yellow (Huanghai) Sea Cold Water Mass (NYSCWM) reveals that the NYSCWM is mainly formed through the continuous temperature increase of the overwintered water body above the Northern Yellow Sea Depression (NYSD) after spring when heat is continuously conducted from the sea surface to the deeper layer. In the NYSCWM's growing period, (June-July), nonlinear vertical convection and advection effects continuously increase, and are gradually balanced by the heat diffusion effect as the temperature increases from the surface to the bottom, which leads to the formation of an intensive thermocline and lateral front. Meanwhile, the three-dimensional circulation correspondingly occurs. In the NYSCWM's entire growing period, the horizontal circulation is always in the cyclonic motion, while the vertical circulation passes through a transition from a period with the cold centre as downwelling to a period with the cold centre as upwelling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We use the hydrographic data obtained during the joint survey of the Yellow Sea by the First Institute of Oceanography, China and the Korea Ocean Research and Development Institute, Korea, to quantify the spatial structures and temporal evolution of the southern Yellow Sea Cold Water Mass (YSCWM). It is indicated that the southern YSCWM is a water mass that develops in summer and decays in fall. In winter, due to the intrusion of the Yellow Sea Warm Current (YSWC), the central area (approximately between 34 degrees N and 35 degrees N, 122 degrees E and 124 degrees E) of the Yellow Sea is mainly occupied by relatively high temperature water (T > 10 degrees C). By contrast, from early summer to fall, under the seasonal thermocline, the central area of Yellow Sea is occupied by cold water (T < 10 degrees C). In summer, the southern YSCWM has two cold cores. One is formed locally southeast of Shandong Peninsula, and the other one has a tongue-like feature occupying the area approximately between 34 degrees N and 37 degrees N, 123 degrees E and 126 degrees E. The bottom layer temperature anomalies from February to July in the cold tongue region, along with the trajectories of the bottom floaters, suggest that the cold water mass in the northeast region has a displacement from the north to the central area of the Yellow Sea during the summer. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The inhibitory effect of 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) and 2,4,6-tri(2-pyridyl)-s-triazine (TPT) molecules on the corrosion of mild steel in 1 mol/L HCl and microcosmic inhibitory mechanism were investigated by X-ray photoelectron spectroscopy and ellipsometry. XPS results showed that C Is and N Is peaks of TTC, C Is and N Is peaks of TPT and their integral areas were obtained, which suggested the layer of the inhibitors (TTC or TPT) should have effectively protected the mild steel surface from the corrosion; and the depression from the inhibitors for the corrosion of mild steel surface was studied using ellipsometry combined with potentiodynamic polarization and the phasic difference was gained, which displayed the inhibitory coverage of the inhibitors formed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ti and Ti alloys can be applied to steels as a protective coating in view of its excellent resistance to corrosive environment. Cold spraying, as a new coating technique, has potential advantages in fabrication of Ti coating in comparison with conventional thermal spraying techniques. In this study, Ti coatings were prepared on carbon steel substrates by cold spraying via controlling the process conditions. The microstructure of coatings was observed by SEM. The porosity of coatings was estimated by image analysis and the bond strength was tested for comparison of the process conditions. Potentiodynamic polarization and open-circuit potential (OCP) measurements were performed to understand the corrosion behavior of the coatings. The SEM examination shows that the coatings become more compact with the increases of pressure and temperature of driving gas. The potentiodynamic polarization curves indicate that the coating which has lower porosity has lower corrosion current. The polarization and OCP measurement reveal that cold-sprayed Ti coating can provide favorable protection to carbon steel substrate. The polishing treatment of coating surface polishes the rough outer layer including the small pores as well as decreases the actual surface area of the coating, leading to the considerable improvement of corrosion resistance.