286 resultados para Cobalt-supported catalyst
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A novel approach to the preparation of polyethylene (PE) nanocomposites, with montmorillonite/silica hybrid (MT-Si) supported catalyst, was developed. MT-Si was prepared by depositing silica nanoparticles between galleries of the MT. A common zirconocene catalyst [bis(cyclopentadienyl)zirconium dichloride/methylaluminoxane] was fixed on the MT-Si surface by a simple method. After ethylene polymerization, two classes of nanofillers (clay layers and silica nanoparticles) were dispersed concurrently in the PE matrix and PE/clay-silica nanocomposites were obtained. Exfoliation of the clay layers and dispersion of the silica nanoparticles were examined with transmission electron microscopy. Physical properties of the nanocomposites were characterized by tensile tests, dynamic mechanical analysis, and DSC. The nanocomposites with a low nanofiller loading (<10 wt %) exhibited good mechanical properties. The nanocomposite powder produced with the supported catalyst had a granular morphology and a high bulk density, typical of a heterogeneous catalyst system.
Resumo:
A catalyst with porous polystyrene beads supported Cp2ZrCl2 was prepared and tested for ethylene polymerization with methylaluminoxane as a cocatalyst. By comparison, the porous supported catalyst maintained higher activity and produced polyethylene with better morphology than its corresponding solid supported catalyst. The differences between activities of the catalysts and morphologies of the products were reasonably explained by the fragmentation processes of support as frequently observed with the inorganic supported Ziegler-Natta catalysts. Investigation into the distribution of polystyrene in the polyethylene revealed the fact that the porous polystyrene supported catalyst had undergone fragmentation during polymerization.
Resumo:
To obtain a novel support with practical value for metallocene catalyst (eta -C5H5)TiCl3 (CpTiCl3), poly (styrene-co-4-vinylpyridine) /SiO2 nanoscale hybrid material (SrP/SiO2) was firstly produced as support. After pretreatment by methylaluminoxane (MAO), the hybrid materials reacted with CpTiCl3. The results from SAXS, SEM and TEM indicated the morphology and structure of organic/inorganic hybrid materials, and the size of inorganic particle in hybrid was nanoscale. The results from IR and XPS showed that there were two possible cationic active species in the hybrid-supported catalyst, the polymerization results of styrene proved this possibility.
Resumo:
The use of functional groups bearing silica/poly(styrene-co-4-vinylpyridine) core-shell particles as a support for a zirconocene catalyst in ethylene polymerization was studied. Several factors affecting the behavior of the supported catalyst and the properties of the resulting polymer, such as time, temperature, Al/N (molar ratio), and Al/Zr (molar ratio), were examined. The conditions of the supported catalyst preparation were more important than those of the ethylene polymerization. The state of the supported catalyst itself played a decisive role in both the catalytic behavior of the supported catalyst and the properties of polyethylene (PE). IR and X-ray photoelectron spectroscopy were used to follow the formation of the supports. The formation of cationic active species is hypothesized, and the performance of the core-shell-particle-supported zirconocene catalyst is discussed as well. The bulk density of the PE formed was higher than that of the polymer obtained from homogeneous and polymer-supported Cp2ZrCl2/methylaluminoxane catalyst systems. (C) 2001 John Wiley & Sons, Inc.
Resumo:
Black Pearls 2000 (designated as BP- 2000) and Vulcan XC-72 (designated as XC-72) carbon blacks were chosen as supports to prepare 40 wt % (the targeted value) Pt/C catalysts by a modified polyol process. The carbon blacks were characterized by N-2 adsorption and Fourier tranform infrared spectroscopy. The prepared catalysts were characterized by inductively coupled plasma atomic emission spectroscopy, transmission electron microscopy, scanning electron microscopy (SEM), in situ cyclic voltammetry, and current-voltage curves. On BP- 2000, Pt nanoparticles were larger in size and more unevenly distributed than on XC-72. It was observed by SEM that the corresponding catalyst layer on BP- 2000 was thicker than that of XC-72 based catalyst at almost the identical catalyst loading. And the BP- 2000 supported catalyst gave a better single cell performance at high current densities. These results suggest that the performance improvement is due to the enhanced oxygen diffusion and water removal capability when BP- 2000 is used as cathode catalyst support. (C) 2004 The Electrochemical Society.
Resumo:
A magnetic nanoparticle (MNP)-supported di(2-pyridyl)methanol palladium dichloride complex was prepared via click chemistry. The MNP-supported catalyst was evaluated in Suzuki coupling reaction in term of activity and recyclability in DMF. It was found to be highly efficient for Suzuki coupling reaction using aryl bromides as substrates and could be easily separated by an external magnet and reused in five consecutive runs without obvious loss of activity.
Resumo:
Zirconocene catalyst was heterogenized inside an organosilane-modified montmorillonite (MMT) pretreated by calcination and acidization, for supported catalyst systems with well-spaced alpha-olefin polymerization active centers. The varied pretreatment and modification conditions of montmorillonite are efficient for supported zirconocene catalysts in control of polyethylene microstructures, in particular, molecular weight distribution. In contrast to other supported catalyst systems, Cp2ZrCl2/modified montmorillonite(MMT-7)-supported catalysts with a distinct interlayer structure catalyzed ethylene homopolymerization and copolymerization with I-octene activated by methylaluminoxane (MAO), resulting in polymers with a bimodal molecular weight distribution (MWD).
Resumo:
Three kinds of polymer resin supported Pd catalysts were prepared by mixing PdCl2, with alkaline styrene anion exchange resins[D392 -NH2, D382, -NHCH3, D301R, -NH(CH3)(2)], strongly alkaline styrene anion exchanged resin [201 X 7DVB, -NH+ (CH3)(3)] and alkaline epoxy exchange resin (701, -NH2), and hydrogenating in liquid phase at 1.013 X 10(5) Pa. The hydrogenation of furfural was studied under the reaction conditions such as solvent, temperature. Pd content in the supported catalyst and the amount of the catalyst. The yield of hydrogenation reaction of furfural markedly increased to 100% and the selectivity to tetrahydrofurfuryl alcohol increased to over 98% by polymer (alkaline styrene anion exchange resins D392, -NH2, D382, -NHCH3) supported palladium catalysts comparing with the yield over 70% and selectivity over 97% by palladium catalyst, in 50% alcohol-50% water or pure water solution at 1.013 X 10(5) Pa. The relationship between hydrogenation and the structures of functional group in the supporting resin was examined by XPS method.
Resumo:
A novel polymer-supported metallocene catalyst with crosslinked poly(styrene-co-acrylamide) (PSAm) as the support has been prepared and characterized. The probability of long sequences of acrylamide (Am) in PSAm is still low even at an Am amount of 32.8 mol %, implying the relatively homogeneous distribution of Am. The infrared spectra of PSAm and the supported catalyst substantiate that an amide group in PSAm coordinates with methylaluminoxane through both oxygen and nitrogen atoms. Ethylene/alpha-octene copolymerization showed that the catalytic activity is not markedly affected by adding alpha-octene. C-13 NMR analysis of the ethylene/alpha-octene copolymer indicated that the composition distribution of the copolymer is uniform. (C) 1999 John Wiley & Sons, Inc.
Resumo:
An in-situ modified sol-gel method for the preparation of a Ni-based monolith-supported catalyst is reported. With the presence of a proper amount of plasticizer and binder, and at an optimized pH value, the stable boehmite sol was modified with metal ions (Ni, Li, La) successfully without distinct growth of the particle size. Monolith-supported Ni-based/gamma-Al2O3 catalysts were obtained using the modified sol as the coating medium with several cycles of dip-coating and calcination. Combined BET, SEM-EDS, XRD and H-2-TPR investigations demonstrated that the derived monolith catalysts had a high specific surface area, a relatively homogeneous surface composition, and a high extent of interaction between the active component and the support. These catalysts showed relatively stable catalytic activities for partial oxidation of methane (POM) to syngas under atmospheric pressure. The monolith catalysts prepared by this sol-gel method also demonstrated an improved resistance to sintering and loss of the active component during the reaction process.
Resumo:
Total oxidation of chlorinated aromatics on supported manganese oxide catalysts was investigated. The catalysts have been prepared by wet impregnation method and characterized by XRD and TPR. Among the catalysts with the supports of TiO(2), Al(2)O(3) and SiO(2), titania supported catalyst (MnO(x)/TiO(2)) gives the highest catalytic activity. MnO(x)/TiO(2) (Mn loading, 1.9 wt.%) shows the total oxidation of chlorobenzene at about 400 degreesC. The activity can be stable for over 82 h except for the first few hours. At lower Mn loadings for MnO(x)/TiO(2), only one reduction peak appears at about 400 degreesC due to the highly dispersed manganese oxide. With the increase of Mn loading, another reduction peak emerges at about 500 degreesC, which is close to the reduction peak of bulk Mn(2)O(3) at 520 degreesC. TPR of the used catalyst is totally different from that of the fresh one indicating that the chemical state of the active species is changed during the chlorobenzene oxidation. The characterization studies of MnO(x)/TiO(2) showed that the highly dispersed MnO(x) is the precursor of the active phase, which can be converted into the active phase, mainly oxychlorinated manganese (MnO(y)Cl(z)), under working conditions of chlorobenzene oxidation. (C) 2001 Elsevier Science B.V. All rights reserved.