110 resultados para Coated cylinder
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The transient thermal stress problem of an inner-surface-coated hollow cylinder with multiple pre-existing surface cracks contained in the coating is considered. The transient temperature, induced thermal stress, and the crack tip stress intensity factor (SIF) are calculated for the cylinder via finite element method (FEM), which is exposed to convective cooling from the inner surface. As an example, the material pair of a chromium coating and an underlying steel substrate 30CrNi2MoVA is particularly evaluated. Numerical results are obtained for the stress intensity factors as a function of normalized quantities such as time, crack length, convection severity, material constants and crack spacing. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
A four-phase confocal elliptical cylinder model is proposed from which a generalised self-consistent method is developed for predicting the thermal conductivity of coated fibre reinforced composites. The method can account for the influence of the fibre section shape ratio on conductivity, and the physical reasonableness of the model is demonstrated by using the fibre distribution function. An exact solution is obtained for thermal conductivity by applying conformal mapping and Laurent series expansion techniques of the analytic function. The solution to the three-phase confocal elliptical model, which simulates composites with idealised fibre-matrix interfaces, is arrived at as the degenerated case. A comparison with other available micromechanics methods, Hashin and Shtrikman's bounds and experimental data shows that the present method provides convergent and reasonable results for a full range of variations in fibre section shapes and for a complete spectrum of the fibre volume fraction. Numerical results show the dependence of the effective conductivities of composites on the aspect ratio of coated fibres and demonstrate that a coating is effective in enhancing the thermal transport property of a composite. The present solutions are helpful to analysis and design of composites.
Resumo:
A three-phase piezoelectric cylinder model is proposed and an exact solution is obtained for the model under a farfield antiplane mechanical load and a far-field inplane electrical load. The three-phase model can serve as a fiber/interphase layer/matrix model, in terms of which a lot of interesting mechanical and electrical coupling phenomena induced by the interphase layer are revealed. It is found that much more serious stress and electrical field concentrations occur in the model with the interphase layer than those without any interphase layer. The three-phase model can also serve as a fiber/matrix/composite model, in terms of which a generalized self-consistent approach is developed for predicting the effective electroelastic moduli of piezoelectric composites. Numerical examples are given and discussed in detail.
Resumo:
首次在涂敷PEI的玻璃表面上制备了癸酸及全氟癸酸的单分子层膜。研究了成膜机理及摩擦特性。结果表明。脱水剂DCCD促进了癸酸或全氟癸酸与PEI酞胺化的反应。导致两种羧酸在PEI表面产生了靠化学键(酞胺键)连接的稳定的单分子层膜,摩擦、磨损实验表明。单分子层有机膜的摩擦特性受膜的组成、表面能及有序性和堆积密度的重要影响。表面能越低,有序性和堆积密度越高。摩擦系数越低。与碳氢化合物相比。碳氟化合物形成的有序膜具有更高的强度和抗磨性能。
Resumo:
We present a good alternative method to improve the tribological properties of polymer films by chemisorbing a long-chain monolayer on the functional polymer surface. Thus, a novel self-assembled monolayer is successfully prepared on a silicon substrate coated with amino-group-containing polyethyleneimine (PEI) by the chemical adsorption of stearic acid (STA) molecules. The formation and structure of the STA-PEI film are characterized by means of contact-angle measurement and ellipsometric thickness measurement, and of Fourier transformation infrared spectrometric and atomic force microscopic analyses. The micro- and macro-tribological properties of the STA-PEI film are investigated on an atomic force microscope (AFM) and a unidirectional tribometer, respectively. It has been found that the STA monolayer about 2.1-nm thick is produced on the PEI coating by the chemical reaction between the amino groups in the PEI and the carboxyl group in the STA molecules to form a covalent amide bond in the presence of N,N'-dicyclohexylcarbodiimide (DCCD) as a dehydrating regent. By introducing the STA monolayer, the hydrophilic PEI polymer surface becomes hydrophobic with a water contact angle to be about 105degrees. Study of the time dependence of the film formation shows that the adsorption of PEI is fast, whereas at least 24 h is needed to generate the saturated STA monolayer. Whereas the PEI coating has relatively high adhesion, friction, and poor anti-wear ability, the STA-PEI film possesses good adhesive resistance and high load-carrying capacity and anti-wear ability, which could be attributed to the chemical structure of the STA-PEI thin film. It is assumed that the hydrogen bonds between the molecules of the STA-PEI film act to stabilize the film and can be restored after breaking during sliding. Thus, the self-assembled STA-PEI thin film might find promising application in the lubrication of micro-electromechanical systems (MEMS).
Resumo:
The transition features of the wake behind a uniform circular cylinder at Re = 200, which is just beyond the critical Reynolds number of 3-D transition, are investigated in detail by direct numerical simulations of 3-D incompressible Navier-Stokes equations. The spanwise characteris-tic length determines the transition features and global properties of the wake.
Resumo:
In 0.1 mol/l KH2PO4–Na2HPO4 (pH 7.80) buffer solution, the potential of zero charge (PZC) and the open circuit potential of gold-coated silicon were determined to be about −0.6 and +0.10 V (vs SCE), respectively. The open circuit potential was higher than the PZC, which indicated that the surface of the gold-coated electrode had a positive charge. The ellipsometry experiment showed that the adsorption of fibrinogen onto the gold-coated silicon wafer surface arrived at a saturated state when the adsorption time exceeded 50 min. The percentage of surface without adsorbed protein, θ, was about 63%. This means that the proportion of surface actually occupied by fibrinogen was only about 37% after the adsorption arrived at saturation. The solution/protein capacitance value was determined in an impulse state around −0.59 V (vs SCE) and was stable (4.2×10−5 F) at other potentials.
Resumo:
A systematically numerical study of the sinusoidally oscillating viscous flow around a circular cylinder was performed to investigate vortical instability by solving the three-dimensional incompressible Navier-Stokes equations. The transition from two- to three-dimensional flow structures along the axial direction due to the vortical instability appears, and the three-dimensional structures lie alternatively on the two sides of the cylinder. Numerical study has been taken for the Keulegan-Carpenter( KC) numbers from 1 to 3.2 and frequency parameters from 100 to 600. The force behaviors are also studied by solving the Morison equation. Calculated results agree well with experimental data and theoretical prediction.
Resumo:
We have recently developed a generalized JKR model for non-slipping adhesive contact between an elastic cylinder and a stretched substrate where both tangential and normal tractions are transmitted across the contact interface. Here we extend this model to a generalized Maugis-Dugdale model by adopting a Dugdale-type adhesive interaction law to eliminate the stress singularity near the edge of the contact zone. The non-slipping Maugis-Dugdale model is expected to have a broader range of validity in comparison with the non-slipping JKR model. The solution shares a number of common features with experimentally observed behaviors of cell reorientation on a cyclically stretched substrate.
Resumo:
A narrow strip is used to control mean and fluctuating forces on a circular cylinder at Reynolds numbers from 2.0 x 10(4) to 1.0 x 10(5). The axes of the strip and cylinder are parallel. The control parameters are strip width ratio and strip position characterized by angle of attack and distance from the cylinder. Wind tunnel tests show that the vortex shedding from both sides of the cylinder can be suppressed, and mean drag and fluctuating lift on the cylinder can be reduced if the strip is installed in an effective zone downstream of the cylinder. A phenomenon of mono-side vortex shedding is found. The strip-induced local changes of velocity profiles in the near wake of the cylinder are measured, and the relation between base suction and peak value in the power spectrum of fluctuating lift is studied. The control mechanism is then discussed from different points of view.
Resumo:
Anodic bonding with thin films of metal or alloy as an intermediate layer, finds increasing applications in micro/nanoelectromechanical systems. At the bonding temperature of 350 degrees C, voltage of 400 V, and 30 min duration, the anodic bonding is completed between Pyrex glass and crystalline silicon coated with an aluminum thin film with a thickness comprised between 50 and 230 nm. Sodium-depleted layers and dendritic nanostructures were observed in Pyrex 7740 glass adjacent to the bonding interface. The sodium depletion width does not increase remarkably with the thickness of aluminum film. The dendritic nanostructures result from aluminum diffusion into the Pyrex glass. This experimental research is expected to enhance the understanding of how the depletion layer and dendritic nanostructures affect the quality of anodic bonding. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Based on similarity analyses, the flow-induced vibrations of a near-wall cylinder with 2 degrees of freedom are investigated experimentally by employing a hydroelastic apparatus in conjunction with a flume. The cylinder's vibration amplitude, vibration frequency and vortex shedding frequency were measured and analyzed. The effects of gap-to-diameter ratio (e,ID) upon the vibration responses are further investigated. The experimental results indicate that, when the reduced velocity (Vr) is small (e.g. Vr = 1.2 similar to 2.6), only streamwise vibration occurs, and its frequency is quite close to its natural frequency in still water. When increasing Vr (e.g. Vr > 3.4), both streamwise and transverse vibrations of the near-wall cylinder may occur. In the examined range of gap-to-diameter ratio (0.42 < e(0)/D < 2.68), 2 vibration stages (in terms of Vr) of streamwise vibrations usually exist: First Streamwise Vibration (FSV) and Second Streamwise Vibration (SSV). In the SSV stage, the vortex shedding frequency may either undergo a jump to that of the streamwise vibration, or stay consistent with that of the transverse vibration. The amplitudes of transverse vibration are usually much larger than those of streamwise vibration for the same value of e(0)/D. The maximum amplitudes of both streamwise and transverse vibration get larger with the increase of e(0)/D (0.42 < e(0)/D < 2.68).
Resumo:
In this paper, equations calculating lift force of a rigid circular cyclinder at lock-in uniform flow are deduced in detail. Besides, equations calculating the lift force on a long flexible circular cyclinder at lock-in are deduced based on mode analysis of a multi-degree freedom system. The simplified forms of these equations are also given. Furthermore, an approximate method to predict the forces and response of rigid circular cyclinders and long flexible circular cyclinders at lock-in is introduced in the case of low mass-damping ratio. A method to eliminate one deficiency of these equations is introduced. Comparison with experimental results show the effectiveness of this approximate method.