24 resultados para Classification of fruits and vegetables

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The jinjiang oyster Crassostrea rivularis [Gould, 1861. Descriptions of Shells collected in the North Pacific Exploring Expedition under Captains Ringgold and Rodgers. Proc. Boston Soc. Nat. Hist. 8 (April) 33-40] is one of the most important and best-known oysters in China. Based on the color of its flesh, two forms of C rivularis are recognized and referred to as the "white meat" and 11 red meat" oysters. The classification of white and red forms of this species has been a subject of confusion and debate in China. To clarify the taxonomic status of the two forms of C. rivularis, we collected and analyzed oysters from five locations along China's coast using both morphological characters and DNA sequences from mitochondrial 16S rRNA and cytochrome oxidase 1, and the nuclear 28S rRNA genes. Oysters were classified as white or red forms according to their morphological characteristics and then subjected to DNA sequencing. Both morphological and DNA sequence data suggest that the red and white oysters are two separate species. Phylogenetic analysis of DNA sequences obtained in this study and existing sequences of reference species show that the red oyster is the same species as C. ariakensis Wakiya [1929. Japanese food oysters. Jpn. J. Zool. 2, 359-367.], albeit the red oysters from north and south China are genetically distinctive. The white oyster is the same species as a newly described species from Hong Kong, C. hongkongensis Lam and Morton [2003. Mitochondrial DNA and identification of a new species of Crassostrea (Bivalvia: Ostreidae) cultured for centuries in the Pearl River Delta, Hong Kong, China. Aqua. 228, 1-13]. Although the name C. rivularis has seniority over C. ariakensis and C. hongkongensis, the original description of Ostrea rivularis by Gould [1861] does not fit shell characteristics of either the red or the white oysters. We propose that the name of C. rivularis Gould [1861] should be suspended, the red oyster should take the name C. ariakensis, and the white oyster should take the name C. hongkongensis. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Full-length and partial genome sequences of four members of the genus Aquareovirus, family Reoviridae (Golden shiner reovirus, Grass carp reovirus, Striped bass reovirus and golden ide reovirus) were characterized. Based on sequence comparison, the unclassified Grass carp reovirus was shown to be a member of the species Aquareovirus C The status of golden ide reovirus, another unclassified aquareovirus, was also examined. Sequence analysis showed that it did not belong to the species Aquareovirus A or C, but assessment of its relationship to the species Aquareovirus B, D, E and F was hampered by the absence of genetic data from these species. In agreement with previous reports of ultrastructural resemblance between aquareoviruses and orthoreoviruses, genetic analysis revealed homology in the genes of the two groups. This homology concerned eight of the 11 segments of the aquareovirus genome (amino acid identity 17-42%), and similar genetic organization was observed in two other segments. The conserved terminal sequences in the genomes of members of the two groups were also similar. These data are undoubtedly an indication of the common evolutionary origin of these viruses. This clear genetic relatedness between members of distinct genera is unique within the family Reoviridae. Such a genetic relationship is usually observed between members of a single genus. However, the current taxonomic classification of aquareoviruses and orthoreoviruses in two different genera is supported by a number of characteristics, including their distinct G+C contents, unequal numbers of genome segments, absence of an antigenic relationship, different cytopathic effects and specific econiches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The taxonomy of the douc and snub-nosed langurs has changed several times during the 20th century. The controversy over the systematic position of these animals has been due in part to difficulties in studying them: both the doucs and the snub-nosed langurs are rare in the wild and are generally poorly represented in institutional collections. This review is based on a detailed examination of relatively large numbers of specimens of most of the species of langurs concerned. An attempt was made to draw upon as many types of information as were available in order to make an assessment of the phyletic relationships between the langur species under discussion. Toward this end, quantitative and qualitative features of the skeleton, specific features of visceral anatomy and characteristics of the pelage were utilized. The final data matrix comprised 178 characters. The matrix was analyzed using the program Hennig86. The results of the analysis support the following conclusions: (1) that the douc and snub-nosed langurs are generically distinct and should be referred to as species of Pygathrix and Rhinopithecus, respectively; (2) that the Tonkin snub-nosed langur be placed in its own subgenus as Rhinopithecus (Presbytiscus) avunculus and that the Chinese snub-nosed langur thus be placed in the subgenus Rhinopithecus (Rhinopithecus); (3) that four extant species of Rhinopithecus be recognized: R. (Rhinopithecus) roxellana Milne Edwards, 1870; R. (Rhinopithecus) bieti Milne Edwards, 1897; R. (Rhinopithecus) brelichi Thomas, 1903, and R. (Presbytiscus) avunculus Dollman, 1912; (4) that the Chinese snub-nosed langurs fall into northern and southern subgroups divided by the Yangtze river; (5) that R. lantianensis Hu and Qi, 1978, is a valid fossil species, and (6) the precise affinities and taxonomic status of the fossil species R. tingianus Matthew and Granger, 1923, are unclear because the type specimen is a subadult.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nucleosides in human urine and serum have frequently been studied as a possible biomedical marker for cancer, acquired immune deficiency syndrome (AIDS) and the whole-body turnover of RNAs. Fifteen normal and modified nucleosides were determined in 69 urine and 42 serum samples using high-performance liquid chromatography (HPLC). Artificial neural networks have been used as a powerful pattern recognition tool to distinguish cancer patients from healthy persons. The recognition rate for the training set reached 100%. In the validating set, 95.8 and 92.9% of people were correctly classified into cancer patients and healthy persons when urine and serum were used as the sample for measuring the nucleosides. The results show that the artificial neural network technique is better than principal component analysis for the classification of healthy persons and cancer patients based on nucleoside data. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over last two decades, numerous studies have used remotely sensed data from the Advanced Very High Resolution Radiometer (AVHRR) sensors to map land use and land cover at large spatial scales, but achieved only limited success. In this paper, we employed an approach that combines both AVHRR images and geophysical datasets (e.g. climate, elevation). Three geophysical datasets are used in this study: annual mean temperature, annual precipitation, and elevation. We first divide China into nine bio-climatic regions, using the long-term mean climate data. For each of nine regions, the three geophysical data layers are stacked together with AVHRR data and AVHRR-derived vegetation index (Normalized Difference Vegetation Index) data, and the resultant multi-source datasets were then analysed to generate land-cover maps for individual regions, using supervised classification algorithms. The nine land-cover maps for individual regions were assembled together for China. The existing land-cover dataset derived from Landsat Thematic Mapper (TM) images was used to assess the accuracy of the classification that is based on AVHRR and geophysical data. Accuracy of individual regions varies from 73% to 89%, with an overall accuracy of 81% for China. The results showed that the methodology used in this study is, in general, feasible for large-scale land-cover mapping in China.