6 resultados para Classification approach
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
In order to effectively improve the classification performance of neural network, first architecture of fuzzy neural network with fuzzy input was proposed. Next a cost function of fuzzy outputs and non-fuzzy targets was defined. Then a learning algorithm from the cost function for adjusting weights was derived. And then the fuzzy neural network was inversed and fuzzified inversion algorithm was proposed. Finally, computer simulations on real-world pattern classification problems examine the effectives of the proposed approach. The experiment results show that the proposed approach has the merits of high learning efficiency, high classification accuracy and high generalization capability.
Resumo:
Automatic molecular classification of cancer based on DNA microarray has many advantages over conventional classification based on morphological appearance of the tumor. Using artificial neural networks is a general approach for automatic classification. In this paper, Direction-Basis-Function neuron and Priority-Ordered algorithm are applied to neural networks. And the leukemia gene expression dataset is used as an example to testify the classifier. The result of our method is compared to that of SVM. It shows that our method makes a better performance than SVM.
Resumo:
Over last two decades, numerous studies have used remotely sensed data from the Advanced Very High Resolution Radiometer (AVHRR) sensors to map land use and land cover at large spatial scales, but achieved only limited success. In this paper, we employed an approach that combines both AVHRR images and geophysical datasets (e.g. climate, elevation). Three geophysical datasets are used in this study: annual mean temperature, annual precipitation, and elevation. We first divide China into nine bio-climatic regions, using the long-term mean climate data. For each of nine regions, the three geophysical data layers are stacked together with AVHRR data and AVHRR-derived vegetation index (Normalized Difference Vegetation Index) data, and the resultant multi-source datasets were then analysed to generate land-cover maps for individual regions, using supervised classification algorithms. The nine land-cover maps for individual regions were assembled together for China. The existing land-cover dataset derived from Landsat Thematic Mapper (TM) images was used to assess the accuracy of the classification that is based on AVHRR and geophysical data. Accuracy of individual regions varies from 73% to 89%, with an overall accuracy of 81% for China. The results showed that the methodology used in this study is, in general, feasible for large-scale land-cover mapping in China.
Resumo:
Semisupervised dimensionality reduction has been attracting much attention as it not only utilizes both labeled and unlabeled data simultaneously, but also works well in the situation of out-of-sample. This paper proposes an effective approach of semisupervised dimensionality reduction through label propagation and label regression. Different from previous efforts, the new approach propagates the label information from labeled to unlabeled data with a well-designed mechanism of random walks, in which outliers are effectively detected and the obtained virtual labels of unlabeled data can be well encoded in a weighted regression model. These virtual labels are thereafter regressed with a linear model to calculate the projection matrix for dimensionality reduction. By this means, when the manifold or the clustering assumption of data is satisfied, the labels of labeled data can be correctly propagated to the unlabeled data; and thus, the proposed approach utilizes the labeled and the unlabeled data more effectively than previous work. Experimental results are carried out upon several databases, and the advantage of the new approach is well demonstrated.
Resumo:
High resolution magic angle spinning (MAS)-H-1 nuclear magnetic resonance (NMR) spectroscopic-based metabonomic approach was applied to the investigation on the acute biochemical effects of Ce(No-3)(3). Male Wistar rats were administrated with various doses of Ce (NO3)(3)(2, 10, and 50 mg(.)kg(-1) body weight), and MAS H-1 NMR spectra of intact liver and kidney tissues were analyzed using principal component analysis to extract toxicity information. The biochemical effects of Ce (NO3)(3) were characterized by the increase of triglycerides and lactate and the decrease of glycogen in rat liver tissue, together with an elevation of the triglyceride level and a depletion of glycerophosphocholine and betaine in kidney tissues. The target lesions of Ce (NO3)(3) on liver and kidney were found by MAS NMR-based metabonomic method. This study demonstrates that the combination of MAS H-1 NMR and pattern recognition analysis can be an effective method for studies of biochemical effects of rare earths.