87 resultados para Chromatic dispersion
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A new method to measure the birefringence dispersion in high-birefringence polarization-maintaining fibers is presented using white-light interferometry. By analyzing broadening of low-coherence interferograms obtained in a scanning Michelson interferometer, the birefringence dispersion and its variation along different fiber sections are acquired with high sensitivity and accuracy. Birefringence dispersions of two PANDA fibers at their operation wavelength are measured to be 0.011 ps/(km nm) and 0.018 ps/(km nm), respectively. Distributed measurement capability of the method is also verified experimentally. (c) 2006 Optical Society of America.
Resumo:
Transmission properties of data amplitude modulation (AM) and frequency modulation (FM) in radio-over-fiber (RoF) system are studied numerically. The influences of fiber dispersion and nonlinearity on different microwave modulation schemes, including double side band (DSB), single side band (SSB) and optical carrier suppression (OCS), are investigated and compared. The power penalties at the base station (BS) and the eye opening penalties of the recovered data at the end users are both calculated and analyzed. Numerical simulation results reveal that the power penalty of FM can be drastically decreased due to the larger modulation depth it can achieve than that of AM. The local spectrum broadening around subcarrier microwave frequency of AM due to fiber nonlinearity can also be eliminated with FM. It is demonstrated for the first time that the eye openings of the FM recovered data can be controlled by its modulation depths and the coding formats. Negative voltage encoding format was used to further decrease the RF frequency thus increase the fluctuation period considering their inverse relationship.
Resumo:
When a Dammann grating is used to split a beam of femtosecond laser pulses into multiple equal-intensity beams, chromatic dispersion will occur in beams of each order of diffraction and with different scale of angular dispersion because the incident ultrashort pulse contains a broad range of spectral bandwidths. We propose a novel method in which the angular dispersion can be compensated by positioning an m-time-density grating to collimate the mth-order beam that has been split, producing an array of beams that are free of angular dispersion. The increased width of the compensated output pulses and the spectral walk-off effect are discussed. We have verified this approach theoretically and validated it through experiments. It should be highly interesting in practical applications of splitting femtosecond laser pulses for pulse-width measurement, pump-probe measurement, and micromachining at multiple points. (c) 2005 Optical Society of America.
Resumo:
Harmonic millimeter wave (mm-wave) generation and frequency up-conversion are experimentally demonstrated using optical injection locking and Brillouin selective sideband amplification (BSSA) induced by stimulated Brillouin scattering in a 10-km single-mode fiber. By using this method, we successfully generate third-harmonic mm-wave at 27 GHz (f(LO) - 9 GHz) with single sideband (SSB) modulation and up-convert the 2GHz intermediate frequency signal into the mm-wave band with single mode modulation of the SSB modes. In addition, the mm-wave carrier obtains more than 23 dB power gain due to the BSSA. The transmission experiments show that the generated mm-wave and up-converted signals indicate strong immunity against the chromatic dispersion of the fibers.
Resumo:
A novel lens system with correction of secondary spectrum without using anomalous glasses is presented. The lens system comprises four separated lens components, with three of them being subapertures. Two examples of apochromatic telescope are presented, both with the use of typical normal glasses, namely crown K9 and flint F5 glasses, and low-cost slightly anomalous dispersion glasses. Secondary spectrum and other chromatic aberrations of the two design examples are corrected.
Resumo:
Based on the homotopy mapping, a globally convergent method of parameter inversion for non-equilibrium convection-dispersion equations (CDEs) is developed. Moreover, in order to further improve the computational efficiency of the algorithm, a properly smooth function, which is derived from the sigmoid function, is employed to update the homotopy parameter during iteration. Numerical results show the feature of global convergence and high performance of this method. In addition, even the measurement quantities are heavily contaminated by noises, and a good solution can be found.
Resumo:
A new particle image technique was developed to analyze the dispersion of tracer particles in an internally circulating fluidized bed (ICFB). The movement course and the concentration distribution of tracer particles in the bed were imaged and the degree of inhomogeneity of tracer particles was analyzed. The lateral and axial dispersion coefficients of particles were calculated for various zones in ICFB. Results indicate that the lateral diffusion coefficient in the fluidized bed with uneven air distribution is significantly higher than that in uniform bubbling beds with even air distribution. The dispersion coefficients are different along bed length and height.
Resumo:
The influences of Casimir and van der Waals forces on the nano-electromechanical systems (NEMS) electrostatic torsional varactor are studied. A one degree of freedom, the torsional angle, is adopted, and the bifurcation behaviour of the NEMS torsional varactor is investigated. There are two bifurcation points, one of which is a Hopf bifurcation point and the other is an unstable saddle point. The phase portraits are also drawn, in which periodic orbits are around the Hopf bifurcation point, but the periodic orbit will break into a homoclinic orbit when meeting the unstable saddle point.
Resumo:
It is shown that in a Karman vortex street flow, particle size influences the dilute particle dispersion. Together with an increase of the particle size, there is an emergence of a period-doubling bifurcation to a chaotic orbit, as well as a decrease of the corresponding basins of attraction. A crisis leads the attractor to escape from the central region of flow. In the motion of dilute particles, a drag term and gravity term dominate and result in a bifurcation phenomenon.
Resumo:
The role of dispersions in the numerical solutions of hydrodynamic equation systems has been realized for long time. It is only during the last two decades that extensive studies on the dispersion-controlled dissipative (DCD) schemes were reported. The studies have demonstrated that this kind of the schemes is distinct from conventional dissipation-based schemes in which the dispersion term of the modified equation is not considered in scheme construction to avoid nonphysical oscillation occurring in shock wave simulations. The principle of the dispersion controlled aims at removing nonphysical oscillations by making use of dispersion characteristics instead of adding artificial viscosity to dissipate the oscillation as the conventional schemes do. Research progresses on the dispersion controlled principles are reviewed in this paper, including the exploration of the role of dispersions in numerical simulations, the development of the dispersion-controlled principles, efforts devoted to high-order dispersion-controlled dissipative schemes, the extension to both the finite volume and the finite element methods, scheme verification and solution validation, and comments on several aspects of the schemes from author's viewpoint.
Resumo:
The influences of Casimir and van der Waals forces on the nano-electromechanical systems (NEMS) electrostatic torsional varactor are studied. A one degree of freedom, the torsional angle, is adopted, and the bifurcation behaviour of the NEMS torsional varactor is investigated. There are two bifurcation points, one of which is a Hopf bifurcation point and the other is an unstable saddle point. The phase portraits are also drawn, in which periodic orbits are around the Hopf bifurcation point, but the periodic orbit will break into a homoclinic orbit when meeting the unstable saddle point.
Resumo:
A compact upwind scheme with dispersion control is developed using a dissipation analogy of the dispersion term. The term is important in reducing the unphysical fluctuations in numerical solutions. The scheme depends on three free parameters that may be used to regulate the size of dissipation as well as the size and direction of dispersion. A coefficient to coordinate the dispersion is given. The scheme has high accuracy, the method is simple, and the amount of computation is small. It also has a good capability of capturing shock waves. Numerical experiments are carried out with two-dimensional shock wave reflections and the results are very satisfactory.
Resumo:
In an optical parametric chirped pulse amplification (OPCPA) laser system, residual phase dispersion should be compensated as much as possible to shorten the amplified pulses and improve the pulse contrast ratio. Expressions of orders of the induced phases in collinear optical parametric amplification (OPA) processes are presented at the central signal wavelength to depict a clear physics picture and to simplify the design of phase compensation. As examples, we simulate two OPCPA systems to compensate for the phases up to the partial fourth-order terms, and obtain flat phase spectra of 200-nm bandwidth at 1064 nm and 90-nm at 800 nm.
Resumo:
The nonlinear dynamics of 1.6-mu m fs laser pulses propagating in fused silica is investigated by employing a full-order dispersion model. Different from the x-wave generation in normally dispersive media, a few-cycle spatiotemporally compressed soliton wave is generated with the contrary contributions of anomalous group velocity dispersion (GVD) and self-phase-modulation. However, at the tailing edge of the pulse forms a shock wave which generates separate and strong supercontinuum peaked at 670 nm. It is also the origin of conical emission formed both in time and frequency domain with the contribution of normal GVD at visible light.
Resumo:
It is shown that in a closed equispaced three-level ladder system, by controlling the relative phase of two applied coherent fields, the conversion from absorption with inversion to lasing without inversion (LWI) can be realized; a large index of the refraction with zero absorption can be gotten; considerable increasing of the spectrum region and value of the LWI gain can be achieved. Our study also reveals that the incoherent pumping will produce a remarkable effect oil the phase-dependent properties of the system. Modifying value of the incoherent pumping can change the property of the system from absorption to amplification and enhance significantly LWI gain. If the incoherent pumping is absent, we cannot get any gain for any value of the relative phase. (c) 2007 Elsevier GmbH. All rights reserved.