56 resultados para Chemical industries

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Superfine mineral materials are mainly resulted from the pulverization of natural mineral resources, and are a type of new materials that can replace traditional materials and enjoy the most extensive application and the highest degree of consumption in the present day market. As a result, superfine mineral materials have a very broad and promising prospect in terms of market potential. Superfine pulverization technology is the only way for the in-depth processing of most of the traditional materials, and is also one of the major means for which mineral materials can realize their application. China is rich in natural resources such as heavy calcite, kaolin, wollastonite, etc., which enjoy a very wide market of application in paper making, rubber, plastics, painting, coating, medicine, environment-friendly recycle paper and fine chemical industries, for example. However, because the processing of these resources is generally at the low level, economic benefit and scale for the processing of these resources have not been realized to their full potential even up to now. Big difference in product indices and superfine processing equipment and technologies between China and advanced western countries still exists. Based on resource assessment and market potential analysis, an in-depth study was carried out in this paper about the superfine pulverization technology and superfine pulverized mineral materials from the point of mineralogical features, determination of processing technologies, analytical methods and applications, by utilizing a variety of modern analytical methods in mineralogy, superfine pulverization technology, macromolecular chemistry, material science and physical chemistry together with computer technology and so on. The focus was placed on the innovative study about the in-depth processing technology and the processing apparatus for kaolin and heavy calcite as well as the application of superfine products. The main contents and the major achievements of this study are listed as follows: 1. Superfine pulverization processing of mineral materials shall be integrated with the study of their crystal structures and chemical composition. And special attention shall be put on the post-processing technologies, rather than on the indices for particle size, of these materials, based on their fields of application. Both technical feasibility and economic feasibility shall be taken into account for the study about superfine pulverization technologies, since these two kinds of feasibilities serve as the premise for the industrialized application of superfine pulverized mineral materials. Based on this principle, preposed chemical treatment method, technology of synchronized superfine pulverization and gradation, processing technology and apparatus of integrated modification and depolymerization were utilized in this study, and narrow distribution in terms of particle size, good dispersibility, good application effects, low consumption as well as high effectiveness of superfine products were achieved in this study. Heavy calcite and kaolin are two kinds of superfine mineral materials that enjoy the highest consumption in the industry. Heavy calcite is mainly applied in paper making, coating and plastics industries, the hard kaolin in northern China is mainly used in macromolecular materials and chemical industries, while the soft kaolin in southern China is mainly used for paper making. On the other hand, superfine pulverized heavy calcite and kaolin can both be used as the functional additives to cement, a kind of material that enjoys the biggest consumption in the world. A variety of analytical methods and instruments such as transmission and scanning electron microscopy, X-ray diffraction analysis, infrared analysis, laser particle size analysis and so on were applied for the elucidation of the properties and the mechanisms for the functions of superfine mineral materials as used in plastics and high-performance cement. Detection of superfine mineral materials is closely related to the post-processing and application of these materials. Traditional detection and analytical methods for superfine mineral materials include optical microscopy, infrared spectral analysis and a series of microbeam techniques such as transmission and scanning electron microscopy, X-ray diffraction analysis, and so on. In addition to these traditional methods, super-weak luminescent photon detection technology of high precision, high sensitivity and high signal to noise ratio was also utilized by the author for the first time in the study of superfine mineral materials, in an attempt to explore a completely new method and means for the study of the characterization of superfine materials. The experimental results are really exciting! The innovation of this study is represented in the following aspects: 1. In this study, preposed chemical treatment method, technology of synchronized superfine pulverization and gradation, processing technology and apparatus of integrated modification and depolymerization were utilized in an innovative way, and narrow distribution in terms of particle size, good dispersibility, good application effects, low consumption as well as high effectiveness of superfine products were achieved in the industrialized production process*. Moreover, a new modification technology and related directions for producing the chemicals were invented, and the modification technology was even awarded a patent. 2. The detection technology of super-weak luminescent photon of high precision, high sensitivity and high signal to noise ratio was utilized for the first time in this study to explore the superfine mineral materials, and the experimental results can be compared with those acquired with scanning electron microscopy and has demonstrated its unique advantages. It can be expected that further study may possibly help to result in a completely new method and means for the characterization of superfine materials. 3. During the heating of kaolinite and its decomposition into pianlinite, the diffraction peaks disappear gradually. First comes the disappearance of the reflection of the basal plane (001), and then comes the slow disappearance of the (hkl) diffraction peaks. And this was first discovered during the experiments by the author, and it has never before reported by other scholars. 4. The first discovery of the functions that superfine mineral materials can be used as dispersants in plastics, and the first discovery of the comprehensive functions that superfine mineral materials can also be used as activators, water-reducing agents and aggregates in high-performance cement were made in this study, together with a detailed discussion. This study was jointly supported by two key grants from Guangdong Province for Scientific and Technological Research in the 10th Five-year Plan Period (1,200,000 yuan for Preparation technology, apparatus and post-processing research by using sub-micron superfine pulverization machinery method, and 300,000 yuan for Method and instruments for biological photon technology in the characterization of nanometer materials), and two grants from Guangdong Province for 100 projects for scientific and technological innovation (700,000 yuan for Pilot experimentation of superfine and modified heavy calcite used in paper-making, rubber and plastics industry, and 400,000 yuan for Study of superfine, modified wollastonite of large length-to-diameter ratio).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report describes a new method for measuring the temperature of the gas behind the reflected shock wave in shock tube, corresponding to the reservoir temperature of a shock tunnel, based on the chemical reaction of small amount of CF4 premixed in the test gas. The final product C2F4 is used as the temperature indicator, which is sampled and detected by a gas chromatography in the experiment. The detected concentration of C2F4 is correlated to the temperature of the reflected shock wave with the initial pressure P-1 and test time tau as parameters in the temperature range 3 300 K < T < 5 600 K, pressure range 5 kPa < P1 <12 kPa and tau similar or equal to 0.4 ms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechano-chemical coupling is a common phenomenon that exists in various biological processes at different physiological levels. Bone tissue remodeling strongly depends on the local mechanical load. Leukocytes are sheared to form the transient aggregates with platelets or other leukocytes in the circulation. Flow pattern affects the signal transduction pathways in endothelial cells. Receptor/ligand interactions are important to cell adhesion since they supply the physical linkages...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modified simplified rate equation (RE) model of flowing chemical oxygen-iodine laser (COIL), which is adapted to both the condition of homogeneous broadening and inhomogeneous broadening being of importance and the condition of inhomogeneous broadening being predominant, is presented for performance analyses of a COIL. By using the Voigt profile function and the gain-equal-loss approximation, a gain expression has been deduced from the rate equations of upper and lower level laser species. This gain expression is adapted to the conditions of very low gas pressure up to quite high pressure and can deal with the condition of lasing frequency being not equal to the central one of spectral profile. The expressions of output power and extraction efficiency in a flowing COIL can be obtained by solving the coupling equations of the deduced gain expression and the energy equation which expresses the complete transformation of the energy stored in singlet delta state oxygen into laser energy. By using these expressions, the RotoCOIL experiment is simulated, and obtained results agree well with experiment data. Effects of various adjustable parameters on the performances of COIL are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

采用高精度的ENO格式和基于基元化学反应的真实化学反应模型求解氢氧混合气体一维爆轰波的精细结构。采用直接起爆方法得到稳定传播的爆轰波,计算的爆轰波阵面参数和实验相当符合。对爆轰波反应区化学反应的研究表明,参与反应的不同组分具有不同类型的变化特征。网格尺寸影响的研究表明,计算结果的精度随着网格尺寸的增加而增加,并能保持较好的收敛性。移动网格研究结果表明,网格运动速度和爆轰速度接近时,两者的相互作用对计算结果产生一定影响。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bulk single crystals b-FeSi2, as a new photoelectric and thermoelectric material, has been successfully grown using chemical vapor transport technique by using iodine as transport agent in a sealed ampoule. The effects of crystal growth condition on quality and morphologies of the single crystals were studied. Both needle-like and grain-like single crystals were gained. By changing substrate temperature, tetrahedral high quality a-FeSi2 single crystals were also obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modified simplified rate-equation model that utilizes the Voigt profile function and another gain saturation model deduced from the kinetic equations are presented for performance analyses of a flowing chemical oxygen-iodine laser. Both models are adapted to both the condition of homogeneous broadening and that of inhomogeneous broadening being of importance and the condition of inhomogeneous broadening being predominant. Effects of temperature and iodine density on the output power and on variations of output power, optical intensity, and saturation intensity with flow distance are presented as well. There are differences between results of two models, but both qualitatively agree with known results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-ignition tests of a model scramjet combustor were conducted by using parallel sonic injection of gaseous hydrogen from the base of a blade-like strut into a supersonic vitiated airstream. The range of stagnation pressure and temperature studied varied from 1.0 to 4.5 MPa and from 1300 to 2200 K, respectively. Experimental results show that the self-ignition limit, in terms of either global or local quantities of pressure and temperature, exhibits a nonmonotonic behavior resembling the classical homogeneous explosion limit of the hydrogen-oxygen system. Specifically, for a given temperature, increasing pressure from a low value can render a nonignitable mixture to first become ignitable, then nonignitable again, This correspondence shows that, despite the globally supersonic nonpremixed configuration studied herein, ignition is strongly influenced by the intricate chemical reaction mechanism and thereby exhibits the homogeneous explosion character. Consequently, self-ignition criteria based on a global reaction rate approximating the complex chemistry are inadequate. An auxiliary computational study on counterflow ignition was also conducted to systematically investigate the contamination effects of vitiated air. Results indicate that the net contamination effects for the present experimental data are expected to be substantially smaller than contributions from the individual contamination species because of the counterbalancing influences of the H2O-inhibition and NO-promotion reactions in effecting ignition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is assumed that both translational and rotational nonequilibrium cross-relaxations play a role simultaneoulsy in low pressure supersonic cw HF chemical laser amplifier. For two-type models of gas flow medium with laminar and turbulent flow diffusion mixing, the expressions of saturated gain spectrum are derived respectively, and the numerical calculations are performed as well. The numerical results show that turbulent flow diffusion mixing model is in the best agreement with the experimental result.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the translational nonequilibrium on performance modeling of flowing chemical oxygen-iodine lasers (COIL) is emphasized in this paper. The spectral line broadening (SLB) model is a basic factor for predicting the performances of flowing COIL. The Voigt profile function is a well-known SLB model and is usually utilized. In the case of gas pressure in laser cavity less than 5 torr, a low pressure limit expression of the Voigt profile function is used. These two SLB models imply that ail lasing particles can interact with monochromatic laser radiation. Basically, the inhomogeneous broadening effects are not considered in these two SLB models and they cannot predict the spectral content. The latter requires consideration of finite translational relaxation rate. Unfortunately, it is rather difficult to solve simultaneously the Navier-Stokes (NS) equations and the conservation equations of the number of lasing particles per unit volume and per unit frequency interval. In the operating condition of flowing COIL, it is possible to obtain a perturbational solution of the conservational equations for lasing particles and deduce a new relation between the gain and the optical intensity, i.e., a new gain-saturation relation. By coupling the gain-saturation relation with other governing equations (such as the NS equations, chemical reaction equations and the optical model of gain-equal-loss), We have numerically calculated the performances of flowing COIL. The present results are compared with those obtained by the common rate-equation (RE) model, in which the Voigt profile function and its low pressure limit expression are used. The difference of different model's results is great. For instance, in the case of lasing frequency coinciding with the central frequency of line profile and very low gas pressure, the gain-saturation relation of the present model is quite different with that of the RE model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An immunosensor interface based on mixed hydrophobic self-assembled monolayers (SAMs) of methyl and carboxylic acid terminated thiols with covalently attached human Immunoglobulin G (hIgG), is investigated. The densely packed and organised SAMs were characterised by contact angle measurements and cyclic voltammetry. The effect of the non-ionic surfactant, Tween 20, in preventing nonspecific adsorption is addressed by ellipsometry during physical and covalent hIgG immobilization on pure and mixed SAMs, respectively. It is clearly demonstrated that nonspecific adsorption due to hydrophobic interactions of hIgG on methyl ended groups is totally inhibited, whereas electrostatic/hydrogen bonding interactions with the exposed carboxylic groups prevail in the presence of surfactant. Results of ellipsometry and Atomic Force Microscopy, reveal that the surface concentration of covalently immobilized hIgG is determined by the ratio of COOH/CH3-terminated thiols in SAM forming solution. Moreover, the ellipsometric data demonstrates that the ratio of bound anti-hIgG/hIgG depends on the density of hIgG on the surface and that the highest ratio is close to three. We also report the selectivity and high sensitivity achieved by chronoamperometry in the detection of adsorbed hIgG and the reaction with its antibody.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A semi-gas kinetics (SGK) model for performance analyses of flowing chemical oxygen-iodine laser (COIL) is presented. In this model, the oxygen-iodine reaction gas flow is treated as a continuous medium, and the effect of thermal motions of particles of different laser energy levels on the performances of the COIL is included and the velocity distribution function equations are solved by using the double-parameter perturbational method. For a premixed flow, effects of different chemical reaction systems, different gain saturation models and temperature, pressure, yield of excited oxygen, iodine concentration and frequency-shift on the performances of the COIL are computed, and the calculated output power agrees well with the experimental data. The results indicate that the power extraction of the SGK model considering 21 reactions is close to those when only the reversible pumping reaction is considered, while different gain saturation models and adjustable parameters greatly affect the output power, the optimal threshold gain range, and the length of power extraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new oxygen-iodine medium gain model is developed to include pumping and deactivation of the upper laser levels of the iodine atoms, hyperfine and translation relaxation, as well as the flowing effect. The rate equations for gain of a supersonic flowing cw oxygen-iodine laser (COIL) are described when the medium is stimulated by a single-mode field. The general solution of the self-consistency integral equation is obtained. The result shows that the saturation behaviour in low pressure of the COIL differs from both the inhomogeneous and homogeneous broadening, and exhibits an 'anomalous' saturation phenomenon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A chemical oxygen iodine laser (COIL) that operates without primary buffer gas has become a new way of facilitating the compact integration of laser systems. To clarify the properties of spatial gain distribution, three-dimensional (3-D) computational fluid dynamics (CFD) technology was used to study the mixing and reactive flow in a COIL nozzle with an interleaving jet configuration in the supersonic section. The results show that the molecular iodine fraction in the secondary flow has a notable effect on the spatial distribution of the small signal gain. The rich iodine condition produces some negative gain regions along the jet trajectory, while the lean iodine condition slows down the development of the gain in the streamwise direction. It is also found that the new configuration of an interleaving jet helps form a reasonable gain field under appropriate operation conditions. (c) 2007 Elsevier Ltd. All rights reserved.