47 resultados para Chaotic attractors
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
In this paper the symmetries of coupled map lattices (CMLs) and their attractors are investigated by group and dynamical system theory, as well as numerical simulation, by means of which the kink-antikink patterns of CMLs in space-amplitude plots are discussed.
Resumo:
A new technique, wavelet network, is introduced to predict chaotic time series. By using this technique, firstly, we make accurate short-term predictions of the time series from chaotic attractors. Secondly, we make accurate predictions of the values and bifurcation structures of the time series from dynamical systems whose parameter values are changing with time. Finally we predict chaotic attractors by making long-term predictions based on remarkably few data points, where the correlation dimensions of predicted attractors are calculated and are found to be almost identical to those of actual attractors.
Resumo:
The dynamic buckling of viscoelastic plates with large deflection is investigated in this paper by using chaotic and fractal theory. The material behavior is given in terms of the Boltzmann superposition principle. in order to obtain accurate computation results, the nonlinear integro-differential dynamic equation is changed into an autonomic four-dimensional dynamical system. The numerical time integrations of equations are performed by using the fourth-order Runge-Kutta method. And the Lyapunov exponent spectrum, the fractal dimension of strange attractors and the time evolution of deflection are obtained. The influence of geometry nonlinearity and viscoelastic parameter on the dynamic buckling of viscoelastic plates is discussed.
Resumo:
We propose here a local exponential divergence plot which is capable of providing an alternative means of characterizing a complex time series. The suggested plot defines a time-dependent exponent and a ''plus'' exponent. Based on their changes with the embedding dimension and delay time, a criterion for estimating simultaneously the minimal acceptable embedding dimension, the proper delay time, and the largest Lyapunov exponent has been obtained. When redefining the time-dependent exponent LAMBDA(k) curves on a series of shells, we have found that whether a linear envelope to the LAMBDA(k) curves exists can serve as a direct dynamical method of distinguishing chaos from noise.
Resumo:
we propose here a local exponential divergence plot which is capable of providing a new means of characterizing chaotic time series. The suggested plot defines a time dependent exponent LAMBDA and a ''plus'' exponent LAMBDA+ which serves as a criterion for estimating simultaneously the minimal acceptable embedding dimension, the proper delay time and the largest Lyapunov exponent.
Experimental investigation on the chaotic phenomena in the wake of a natural thermal convection flow
Resumo:
Chaotic phenomena in the wake of thermal convection flow fields above a heating flat plate were investigated experimentally. A newly developed electron beam fluorescence technique (EBF) was used to simultaneously measure density fluctuation at 7 points in a cross section above the plate. Correlation dimensions, intermittence coefficients, Fourier spectrum have been obtained for different Grashof numbers. Spatial distribution of correlation dimensions are presented. The experimental result shows that there is a certain relationship between the density fluctuation and the Gr number. And time-spacial characteristic of chaos evolution is also given.
Resumo:
The system of coupled oscillators and its time-discretization (with constant stepsize h) are considered in this paper. Under some conditions, it is showed that the discrete systems have one-dimensional global attractors l(h) converging to l which is the global attractor of continuous system.
Resumo:
Some properties of hyperchaos are exploited by studying both uncoupled and coupled CML. In addition to usual properties of chaotic strange attractors, there are other interesting properties, such as: the number of unstable periodic points embedded in the strange attractor increases dramatically increasing and a large number of low-dimensional chaotic invariant sets are contained in the strange attractor. These properties may be useful for regarding the edge of chaos as. the origin of complexity of dynamical systems.
Resumo:
Three types of streamline topology in a Karman vortex street flow are shown under the variation of spatial parameters. For the motion of dilute particles in the Karman vortex street flow, there exist a route of bifurcation to a chaotic orbit and more attractors in a bifurcation diagram for the proportion of particle density to fluid density. Along with the increase of spatial parameters in the flow field, the bifurcation process is suspended, as well as more and more attractors emerge. In the motion of dilute particles, a drag term and gravity term dominate and result in the bifurcation phenomenon.
Resumo:
Based on coupled map lattice (CML), the chaotic synchronous pattern in space extend systems is discussed. Making use of the criterion for the existence and the conditions of stability, we find an important difference between chaotic and nonchaotic movements in synchronization. A few numerical results are presented.
Resumo:
The transition process from steady to turbulent convection via subharmonic bifurcation in thermocapillary convection of half floating zone was studied by numerical simulation and experimental test. Both approaches gave structure of period doubling bifurcations in the present paper, and the Feigenbaum universal law was checked for the system of thermocapillary convection.
Resumo:
We present a direct and dynamical method to distinguish low-dimensional deterministic chaos from noise. We define a series of time-dependent curves which are closely related to the largest Lyapunov exponent. For a chaotic time series, there exists an envelope to the time-dependent curves, while for a white noise or a noise with the same power spectrum as that of a chaotic time series, the envelope cannot be defined. When a noise is added to a chaotic time series, the envelope is eventually destroyed with the increasing of the amplitude of the noise.
Resumo:
Chaotic behavior of closed loop pulsating heat pipes (PHPs) was studied. The PHPs were fabricated by capillary tubes with outer and inner diameters of 2.0 and 1.20 mm. FC-72 and deionized water were used as the working fluids. Experiments cover the following data ranges: number of turns of 4, 6, and 9, inclination angles from 5 degrees (near horizontal) to 90, (vertical), charge ratios from 50% to 80%, heating powers from 7.5 to 60.0 W. The nonlinear analysis is based on the recorded time series of temperatures on the evaporation, adiabatic, and condensation sections. The present study confirms that PHPs are deterministic chaotic systems. Autocorrelation functions (ACF) are decreased versus time, indicating prediction ability of the system is finite. Three typical attractor patterns are identified. Hurst exponents are very high, i.e., from 0.85 to 0.95, indicating very strong persistent properties of PHPs. Curves of correlation integral versus radius of hypersphere indicate two linear sections for water PHPs, corresponding to both high frequency, low amplitude, and low frequency, large amplitude oscillations. At small inclination angles near horizontal, correlation dimensions are not uniform at different turns of PHPs. The non-uniformity of correlation dimensions is significantly improved with increases in inclination angles. Effect of inclination angles on the chaotic parameters is complex for FC-72 PHPs, but it is certain that correlation dimensions and Kolmogorov entropies are increased with increases in inclination angles. The optimal charge ratios are about 60-70%, at which correlation dimensions and Kolmogorov entropies are high. The higher the heating power, the larger the correlation dimensions and Kolmogorov entropies are. For most runs, large correlation dimensions and Kolmogorov entropies correspond to small thermal resistances, i.e., better thermal performance, except for FC-72 PHPs at small inclination angles of theta < 15 degrees.