10 resultados para Cellular structure

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the cellular structure of a two-dimensional detonation wave in a low pressure H2/O2/Ar mixture calculated with a detailed chemical reaction model, high order scheme and high resolution grids is investigated. The regular cellular structure is produced about 1 ms after introducing perturbations in the reaction zone of a steady one-dimensional detonation wave. It is found from the present resolution study that the discrepancies concerning the structure type arising from the coarser grid employed can be resolved using a sufficiently fine grid size of 0.05 mm and below and shows a double-Mach-like strong-type configuration. During the structure evolution process, the structure configuration does not change much in the periods before and after the triple point collision. Through the triple point collision, three regular collision processes are observed and are followed by a quick change to the double-Mach-like configuration. The simulated structure tracks show that there are three different tracks associated with different triple points or the kink on the transverse wave. Comparisons with previous work and experiments indicate the presence of a strong structure for an ordinary detonation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The critical wedge angle (CWA) for the transition from regular reflection (RR) to Mach reflection (MR) of a cellular detonation wave is studied numerically by an improved space-time conservation element and solution element method together with a two-step chemical reaction model. The accuracy of that numerical way is verified by simulating cellular detonation reflections at a 19.3∘ wedge. The planar and cellular detonation reflections over 45∘–55∘ wedges are also simulated. When the cellular detonation wave is over a 50∘ wedge, numerical results show a new phenomenon that RR and MR occur alternately. The transition process between RR and MR is investigated with the local pressure contours. Numerical analysis shows that the cellular structure is the essential reason for the new phenomenon and the CWA of detonation reflection is not a certain angle but an angle range.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An Nd:glass laser pulse (18 ns, 1.38 J) is focused in a tiny area of about 100-mum diam under ambient conditions to produce micro-shock waves. The laser is focused above a planar surface with a typical standoff distance of about 4 mm, The laser energy is focused inside a supersonic circular jet of carbon dioxide gas produced by a nozzle with internal diameter of 2.9 mm and external diameter of 8 mm, Nominal value of the Mach number of the jet is around 2 with the corresponding pressure ratio of 7.5 (stagnation pressure/static pressure at the exit of the nozzle), The interaction process of the micro-shock wave generated inside the supersonic jet with the plane wall is investigated using double-pulse holographic interferometry. A strong surface vortex field with subsequent generation of a side jet propagating outward along the plane wail is observed. The interaction of the micro-shock wave with the cellular structure of the supersonic jet does not seem to influence the near surface features of the flowfield. The development of the coherent structures near the nozzle exit due to the upstream propagation of pressure waves seems to be affected by the outward propagating micro-shock wave. Mach reflection is observed when the micro-shock wave interacts with the plane wall at a standoff distance of 4 mm, The Mach stem is slightly deflected, indicating strong boundary-layer and viscous effects near the wall. The interaction process is also simulated numerically using an axisymmetric transient laminar Navier-Stokes solver. Qualitative agreement between experimental and numerical results is good.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a series of soot tracks formed by gaseous detonation waves diffracting around wedges with different wedge angles. These cellular structure patterns describe the Mach-reflection processes of a detonation and reveal some unique characteristics. They can be used to analyze the relationship between the trajectory angle of the triple point, wedge angle, and initial pressure in Mach reflection. Compared to the Mach-reflected one-dimensional shock wave in nonreactive air, all these unique characteristics for a Mach-reflected detonation should be attributed to the transverse-wave structure of the detonation front; meanwhile, the precursor shock wave and transverse wave influence the Mach-reflected detonation, respectively. The experimental results support the recently published numerical simulation of this complex phenomenon.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The new numerical algorithms in SUPER/CESE and their applications in explosion mechanics are studied. The researched algorithms and models include an improved CE/SE (space-time Conservation Element and Solution Element) method, a local hybrid particle level set method, three chemical reaction models and a two-fluid model. Problems of shock wave reflection over wedges, explosive welding, cellular structure of gaseous detonations and two-phase detonations in the gas-droplet system are simulated by using the above-mentioned algorithms and models. The numerical results reveal that the adopted algorithms have many advantages such as high numerical accuracy, wide application field and good compatibility. The numerical algorithms presented in this paper may be applied to the numerical research of explosion mechanics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

针对30°楔角的驻定斜爆轰特性,选择在临界爆轰马赫数附近6.8、7.0与7.5等3种不同马赫数来流状态进行数值分析. 在马赫数为6.8、7.0状态下,在斜激波(oblique shock wave,OSW)、斜爆轰波(oblique detonation wave,ODW)与爆燃波交汇处形成的三波点后形成一道激波,在楔面上反射,并透过接触间断面与爆轰波阵面产生的横波相互作用,使得下游流场发生扰动,形成不规则的胞格结构. 斜爆轰波阵面产生的横波呈现上游单向传播与下游双向传播同时并存的现象,对斜爆轰的稳定性产生了影响

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper reports on two-dimensional numerical simulation of cellular detonation wave in a / / mixture with low initial pressure using a detailed chemical reaction model and high order WENO scheme. Before the final equilibrium structure is produced, a fairly regular but still non-equilibrium mode is observed during the early stage of structure formation process. The numerically tracked detonation cells show that the cell size always adapts to the channel height such that the cell ratio is fairly independent of the grid sizes and initial and boundary conditions. During the structural evolution in a detonation cell, even as the simulated detonation wave characteristics suggest the presence of an ordinary detonation, the evolving instantaneous detonation state indicates a mainly underdriven state. As a considerable region of the gas mixture in a cell is observed to be ignited by the incident wave and transverse wave, it is further suggested that these two said waves play an essential role in the detonation propagation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mg-8Gd-1Dy-0.3Zn (wt.%) alloy was prepared by high-pressure die-casting technique. The thermal stability, mechanical properties at temperature range from room temperature to 573 K and strengthening mechanism was investigated. The results showed that the die-cast state alloy was mainly composed of fine cellular equiaxed grain. The fine porosity-free skin region was related to the aggregation of rare earth elements. The long lamellar-shaped stacking compound containing Zn and polygon-shaped precipitate were observed along the grain boundaries. The die-cast sample exhibited high mechanical properties and good thermal stability until 523 K.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mesostructured cellular foam (MCF) with three-dimensional (313) disordered strutlike structure is prepared by using triblock copolymer (poly(styrene-b-butadiene-b-styrene), SBS, M-W = 140K) as template under strong acid conditions. It is the first report to use triblock copolymer with both hydrophobic head and tail groups instead of hydrophilic head and hydrophobic tail copolymers to synthesize siliceous mesostructured cellular foams. The resulted materials have high pore volume (0.92 cm(3)/g) and relatively narrow pore size distributions with a large pore size of 7.9 nm, which will allow for the fixation of large active complexes, reduce diffusional restriction of reactants and enable reactions involving bulky molecules to take place, especially.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Siliceous mesostructured cellular foam with three-dimensional (3D) wormhole structure (MSU-type) is prepared by using triblock copolymer (poly(styrene-b-butadiene-b- styrene), SBS) with both hydrophobic head and tail group as template in strong acid condition via microemulsion method. The effects of SBS addition and temperature on the morphology and physicochemical properties, such as pore diameters, surface areas and pore volumes of the materials have been investigated by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscope (FE-SEM) and nitrogen adsorption-desorption analysis. The results show that the pore volumes, pore sizes and specific surface areas depend strongly on the SBS amount and forming micelles temperature. Moreover, the materials obtained with high wall thickness exhibit a relatively good thermal stability.