19 resultados para Catastrophe
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The paper presents an experimental study on critical sensitivity in rocks. Critical sensitivity means that the response of a system to external controlling variable may become significantly sensitive as the system approaches its catastrophic rupture point. It is found that the sensitivities measured by responses on three scales (sample scale, locally macroscopic scales and mesoscopic scale) display increase prior to catastrophic transition point. These experimental results do support the concept that critical sensitivity might be a common precursory feature of catastrophe. Furthermore, our previous theoretical model is extended to explore the fluctuations in critical sensitivity in the rock tests.
Resumo:
In order to study the failure of disordered materials, the ensemble evolution of a nonlinear chain model was examined by using a stochastic slice sampling method. The following results were obtained. (1) Sample-specific behavior, i.e. evolutions are different from sample to sample in some cases under the same macroscopic conditions, is observed for various load-sharing rules except in the globally mean field theory. The evolution according to the cluster load-sharing rule, which reflects the interaction between broken clusters, cannot be predicted by a simple criterion from the initial damage pattern and even then is most complicated. (2) A binary failure probability, its transitional region, where globally stable (GS) modes and evolution-induced catastrophic (EIC) modes coexist, and the corresponding scaling laws are fundamental to the failure. There is a sensitive zone in the vicinity of the boundary between the GS and EIC regions in phase space, where a slight stochastic increment in damage can trigger a radical transition from GS to EIC. (3) The distribution of strength is obtained from the binary failure probability. This, like sample-specificity, originates from a trans-scale sensitivity linking meso-scopic and macroscopic phenomena. (4) Strong fluctuations in stress distribution different from that of GS modes may be assumed as a precursor of evolution-induced catastrophe (EIC).
Resumo:
Both earthquake prediction and failure prediction of disordered brittle media are difficult and complicated problems and they might have something in common. In order to search for clues for earthquake prediction, the common features of failure in a simple nonlinear dynamical model resembling disordered brittle media are examined. It is found that the failure manifests evolution-induced catastrophe (EIC), i.e., the abrupt transition from globally stable (GS) accumulation of damage to catastrophic failure. A distinct feature is the significant uncertainty of catastrophe, called sample-specificity. Consequently, it is impossible to make a deterministic prediction macroscopically. This is similar to the question of predictability of earthquakes. However, our model shows that strong stress fluctuations may be an immediate precursor of catastrophic failure statistically. This might provide clues for earthquake forecasting.
Resumo:
Large earthquakes can be viewed as catastrophic ruptures in the earth’s crust. There are two common features prior to the catastrophe transition in heterogeneous media. One is damage localization and the other is critical sensitivity; both of which are related to a cascade of damage coalescence. In this paper, in an attempt to reveal the physics underlying the catastrophe transition, analytic analysis based on mean-field approximation of a heterogeneous medium as well as numerical simulations using a network model are presented. Both the emergence of damage localization and the sensitivity of energy release are examined to explore the inherent statistical precursors prior to the eventual catastrophic rupture. Emergence of damage localization, as predicted by the mean-field analysis, is consistent with observations of the evolution of damage patterns. It is confirmed that precursors can be extracted from the time-series of energy release according to its sensitivity to increasing crustal stress. As a major result, present research indicates that the catastrophe transition and the critical point hypothesis (CPH) of earthquakes are interrelated. The results suggest there may be two cross-checking precursors of large earthquakes: damage localization and critical sensitivity.
Resumo:
A numerical simulation of damage evolution in a two-dimensional system of micocracks is presented. It reveals that the failure is induced by a cascade of coalescences of microcracks, and the fracture surface appears fractal. A model of evolution-induced catastrophe is introduced. The fractal dimension is found to be a function of evolution rule only. This result could qualitatively explain the correlation of fractal dimension and fracture toughness discovered in experiments.
Resumo:
Fracture due to coalescence of microcracks seems to be catalogued in a new model of evolution induced catastrophe (EIC). The key underlying mechanism of the EIC is its automatically enlarging interaction of microcracks. This leads to an explosively evolving catastrophe. Most importantly, the EIC presents a fractal dimension spectrum which appears to be dependent on the interaction.
Resumo:
The number, the angles of orientation and the stability in Rumyantsev Movchan's sense of oblique steady rotations of a symmetric heavy gyroscope with a cavity completely filled with a uniform viscous liquid, possessing a fixed point 0 on its symmetric axis. are given for various values of the parameters. By taking the square of the upright component of the angular momentum M2 as a control parameter, three types of bifurcation diagrams of the steady rotations, two types of jumps and two kinds of local catastrophes, one being the symmetric reduced cusp type and the other being of the symmetric reduced butterfly type, are obtained. By taking account of the M2-damping owing to the moment of unavoidable faint friction, two different modes for the gyroscope, initially in a stable quasi-steady upright rotation with a nutation angle theta(s) equal to zero, to topple over are found.
Resumo:
The paper presents an experimental study on critical sensitivity in rocks. Critical sensitivity means that the response of a system to external controlling variable may become significantly sensitive as the system approaches its catastrophic rupture point. It is found that the sensitivities measured by responses on three scales (sample scale, locally macroscopic scales and mesoscopic scale) display increase prior to catastrophic transition point. These experimental results do support the concept that critical sensitivity might be a common precursory feature of catastrophe. Furthermore, our previous theoretical model is extended to explore the fluctuations in critical sensitivity in the rock tests.
Resumo:
In heterogeneous brittle media, the evolution of damage is strongly influenced by the multiscale coupling effect. To better understand this effect, we perform a detailed investigation of the damage evolution, with particular attention focused on the catastrophe transition. We use an adaptive multiscale finite-element model (MFEM) to simulate the damage evolution and the catastrophic failure of heterogeneous brittle media. Both plane stress and plane strain cases are investigated for a heterogeneous medium whose initial shear strength follows the Weibull distribution. Damage is induced through the application of the Coulomb failure criterion to each element, and the element mesh is refined where the failure criterion is met. We found that as damage accumulates, there is a stronger and stronger nonlinear increase in stress and the stress redistribution distance. The coupling of the dynamic stress redistribution and the heterogeneity at different scales result in an inverse cascade of damage cluster size, which represents rapid coalescence of damage at the catastrophe transition.
Resumo:
Rupture in the heterogeneous crust appears to be a catastrophe transition. Catastrophic rupture sensitively depends on the details of heterogeneity and stress transfer on multiple scales. These are difficult to identify and deal with. As a result, the threshold of earthquake-like rupture presents uncertainty. This may be the root of the difficulty of earthquake prediction. Based on a coupled pattern mapping model, we represent critical sensitivity and trans-scale fluctuations associated with catastrophic rupture. Critical sensitivity means that a system may become significantly sensitive near catastrophe transition. Trans-scale fluctuations mean that the level of stress fluctuations increases strongly and the spatial scale of stress and damage fluctuations evolves from the mesoscopic heterogeneity scale to the macroscopic scale as the catastrophe regime is approached. The underlying mechanism behind critical sensitivity and trans-scale fluctuations is the coupling effect between heterogeneity and dynamical nonlinearity. Such features may provide clues for prediction of catastrophic rupture, like material failure and great earthquakes. Critical sensitivity may be the physical mechanism underlying a promising earthquake forecasting method, the load-unload response ratio (LURR).
Resumo:
Fracture owing to the coalescence of numerous microcracks can be described by a simple statistical model, where a coalescence event stochastically occurs as the number density of nucleated microcracks increases. Both numerical simulation and statistical analysis reveal that a microcrack coalescence process may display avalanche behavior and that the final failure is catastrophic. The cumulative distribution of coalescence events in the vicinity of critical fracture follows a power law and the fracture profile has self-affine fractal characteristic. Some macromechanical quantities may be traced back and extracted from the mesoscopic process based on the statistical analysis of coalescence events.
Resumo:
A model of dynamical process and stochastic jump has been put forward to study the pattern evolution in damage-fracture. According to the final states of evolution processes, the evolution modes can be classified as globally stable modes (GS modes) and evolution induced catastrophic modes (ElC modes); the latter are responsible for fracture. A statistical description is introduced to clarify the pattern evolution in this paper. It is indicated that the appearance of fracture in disordered materials should be depicted by probability distribution function.
Resumo:
In heterogeneous brittle media, the evolution of damage is strongly influenced by the multiscale coupling effect. To better understand this effect, we perform a detailed investigation of the damage evolution, with particular attention focused on the catastrophe transition. We use an adaptive multiscale finite-element model (MFEM) to simulate the damage evolution and the catastrophic failure of heterogeneous brittle media. Both plane stress and plane strain cases are investigated for a heterogeneous medium whose initial shear strength follows the Weibull distribution. Damage is induced through the application of the Coulomb failure criterion to each element, and the element mesh is refined where the failure criterion is met. We found that as damage accumulates, there is a stronger and stronger nonlinear increase in stress and the stress redistribution distance. The coupling of the dynamic stress redistribution and the heterogeneity at different scales result in an inverse cascade of damage cluster size, which represents rapid coalescence of damage at the catastrophe transition.
Resumo:
The physics-based parameter: load/unload response ratio (LURR) was proposed to measure the proximity of a strong earthquake, which achieved good results in earthquake prediction. As LURR can be used to describe the damage degree of the focal media qualitatively, there must be a relationship between LURR and damage variable (D) which describes damaged materials quantitatively in damage mechanics. Hence, based on damage mechanics and LURR theory, taking Weibull distribution as the probability distribution function, the relationship between LURR and D is set up and analyzed. This relationship directs LURR applied in damage analysis of materials quantitatively from being qualitative earlier, which not only provides the LURR method with a more solid basis in physics, but may also give a new approach to the damage evaluation of big scale structures and prediction of engineering catastrophic failure. Copyright (c) 2009 John Wiley & Sons, Ltd.
Resumo:
The physics-based parameter: load/unload response ratio (LURR) was proposed to measure the proximity of a strong earthquake, which achieved good results in earthquake prediction. As LURR can be used to describe the damage degree of the focal media qualitatively, there must be a relationship between LURR and damage variable (D) which describes damaged materials quantitatively in damage mechanics. Hence, based on damage mechanics and LURR theory, taking Weibull distribution as the probability distribution function, the relationship between LURR and D is set up and analyzed. This relationship directs LURR applied in damage analysis of materials quantitatively from being qualitative earlier, which not only provides the LURR method with a more solid basis in physics, but may also give a new approach to the damage evaluation of big scale structures and prediction of engineering catastrophic failure. Copyright (c) 2009 John Wiley & Sons, Ltd.