347 resultados para Catalytic cycles
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Until quite recently our understanding of the basic mechanical process responsible for earthquakes and faulting was not well known. It can be argued that this was partly a consequence of the complex nature of fracture in crust and in part because evidence of brittle phenomena in the natural laboratory of the earth is often obliterated or obscured by other geological processes. While it is well understood that the spatial and temporal complexity of earthquakes and the fault structures emerge from geometrical and material built-in heterogeneities, one important open question is how the shearing becomes localized into a band of intense fractures. Here the authors address these questions through a numerical approach of a tectonic plate by considering rockmass heterogeneity both in microscopic scale and in mesoscopic scale. Numerical simulations of the progressive failure leading to collapse under long-range slow driving forces in the far-field show earthquake-like rupture behavior. $En Echelon$ crack-arrays are reproduced in the numerical simulation. It is demonstrated that the underlying fracturing induced acoustic emissions (or seismic events) display self-organized criticality------from disorder to order. The seismic cycles and the geometric structures of the fracture faces, which are found greatly depending on the material heterogeneity (especially on the macroscopic scale), agree with that observed experimentally in real brittle materials. It is concluded that in order to predict a main shock, one must have extremely detailed knowledge on very minor features of the earth's crust far from the place where the earthquake originated. If correct, the model proposed here seemingly provides an explanation as to why earthquakes to date are not predicted so successfully. The reason is not that the authors do not understand earthquake mechanisms very well but that they still know little about our earth's crust.
Resumo:
A criterion of spatial chaos occurring in lattice dynamical systems-heteroclinic cycle-is discussed. It is proved that if the system has asymptotically stable heteroclinic cycle, then it has asymptotically stable homoclinic point which implies spatial chaos.
Resumo:
Catalytic cracking of China no. 3 aviation kerosene using a zeolite catalyst was investigated under supercritical conditions. A three-stage heating/cracking system was specially designed to be capable of heating 0.8 kg kerosene to a temperature of 1050 K and pressure of 7.0 MPa with maximum mass flow rate of 80 g/s. Sonic nozzles of different diameters were used to calibrate and monitor the mass flow rate of the cracked fuel mixture. With proper experiment arrangements, the mass flow rate per unit throat area of the cracked fuel mixture was found to well correlate with the extent of fuel conversion. The gaseous products obtained from fuel cracking under different conditions were also analyzed using gas chromatography. Composition analysis showed that the average molecular weight of the resulting gaseous products and the fuel mass conversion percentage were a strong function of the fuel temperature and were only slightly affected by the fuel pressure. The fuel conversion was also shown to depend on the fuel residence time in the reactor, as expected. Furthermore, the heat sink levels due to sensible heating and endothermic cracking were determined and compared at varying test conditions. It was found that at a fuel temperature of similar to 1050 K, the total heat sink reached similar to 3.4 MJ/kg, in which chemical heat sink accounted for similar to 1.5 MJ/kg.
Resumo:
We studied the effects of repeated stimulation by recombinant human FSH (rhFSH) at various time intervals during a physiologic breeding season in rhesus monkeys. Ovarian recovery and responses were assessed by ultrasonography, serum steroid concentrations
Resumo:
The compensatory responses of juvenile gibel carp and Chinese longsnout catfish to four cycles of 1 part of a study designed to determine feeding regimes that would maximise growth rates. Both species showed compensatory growth in the re-feeding periods. The compensation was not sufficient for the deprived fish to match the growth trajectories of controls fed to satiation daily. The compensatory growth response was more clearly defined in the later cycles. The deprived fish showed hyperphagia during the 2-week periods of re-feeding and the hyperphagic response was clearer in the later cycles. The hyperphagia tended to persist for both weeks of the re-feeding period. The gibel carp showed no difference in gross growth efficiency between deprived and control fish. In the catfish, the gross growth efficiency of the deprived fish was marginally higher than that of control fish, but the efficiency varied erratically from week to week. Over the experiment, the deprived fish achieved growth rates 75-80% of those shown by control fish, although fed at a frequency of 66%. There was no evidence of growth over-compensation with the deprivation-re-feeding protocol used in this study. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Individual juvenile three-spined sticklebacks Gasterosteus aculeatus and European minnow Phoxinus phoxinus, from sympatric populations, were subjected to four cycles of I week of food deprivation and 2 weeks of ad libitum feeding. Mean specific growth rate during the weeks of deprivation was negative and did not differ between species. The three-spined stickleback showed sufficient growth compensation to recover to the growth trajectory shown by control fish daily fed ad libitum. The compensation was generated by hyperphagia during the re-feeding periods, and in the last two periods of re-feeding, the gross growth efficiencies of deprived three-spined sticklebacks were greater than in control fish. The expression of the compensatory changes in growth and food consumption became clearer over the successive periods of re-feeding. The European minnow developed only a weak compensatory growth response and the mass trajectory of the deprived fish deviated more and more from the control trajectory During re-feeding periods, there were no significant differences in food consumption or gross growth efficiency between control and deprived European minnows. The differences between the two species are discussed in terms of the possible costs of compensatory growth, the control of growth and differences in feeding biology (C) 2003 The Fisheries Society of the British Isles.
Resumo:
The effects of deposition gas pressure and H-2 dilution ratio (H-2/SiH4+CH4+H-2), generally considered two of dominant parameters determining crystallinity in beta-SiC thin films prepared by catalytic chemical vapor deposition (Cat-CVD), often called hot-wire CVD method, on the films properties have been systematically studied. As deposition gas pressure increase from 40 to 1000 Pa, the crystallinity of the films is improved. From the study of H-2 dilution ratio, it is considered that H-2 plays a role as etching gas and modulating the phases in beta-SiC thin films. On the basis of the study on the parameters, nanocrystalline beta-SiC films were successfully synthesized on Si substrate at a low temperature of 300degreesC. The Fourier Transform Infrared Spectroscopy (FTIR) and X-ray diffraction (XRD) spectra show formation of beta-SiC. Moreover, according to Sherrer equation, the average grain size of the films estimated is in nanometer-size. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A procedure for purifying single-walled carbon nanotubes (SWNTs) synthesized by the catalytic decomposition of hydrocarbons has been developed. Based on the results from SEM observations, EDS analysis and Raman measurements, it was found that amorphous carbon, catalyst particles, vapor-grown carbon nanofibers and multi-walled carbon nanotubes were removed from the ropes of SWNTs without damaging the SWNT bundles, and a 40% yield of the SWNTs with a purity of about 95% was achieved after purification. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
TiO2/4A zeolite composite catalysts were prepared by coating TiO2 on 4A zeolite via liquid phase deposition. The TiO 2/4A zeolite composite catalysts wtih higher surface weak acidity and lower mediate strong acidity exhibit much better catalytic performance on ethanol dehydration to ethylene compared with 4A zeolite. It is suggested that the TiO2 promoter could improve the effective Lewis acidity of composite catalyst which consequently enhanced the catalytic performance.