229 resultados para Cast iron
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Nontransferred DC laminar plasma jets of stable flow and low impinging pressure acting on the substrate were used to heat W–Mo–Cu cast iron for phase transfer hardening of the surface layer. Substrates were heated in multipass with or without overlapping or heated with only single-pass. Surface morphologies of the molten trace and microstructure of the cross-section were observed, and the hardness distribution of the treated surface layer was examined. The surface layer of single-pass-heated specimen has an average hardness of about 900 HV0.1, while the specimen treated with multipass shows an average hardness of about 700 HV0.1, because of the heat effect from the neighboring pass treating, compared with the substrate hardness of about 300 HV0.1. The results demonstrate the stable and favorably controlled heating of the laminar plasma jet on the substrate surface and feasibility of using it as a tool for surface hardening of cast iron.
Resumo:
This paper focuses on improving the thermal fatigue resistance on the surface of vermicular cast iron coupling with inserted H13 steel blocks that had different cross sections, by cast-in processing. The microstructure of bionic units was examined by scanning electron microscope. Micro-hardness and thermal fatigue resistance of bionic samples with varied cross sections and spacings were investigated, respectively. Results show that a marked metallurgical bonding zone was produced at interface between the inserted H13 steel block and the parent material - a unique feature of the bionic structure in the vermicular cast iron samples. The micro-hardness of the bionic samples has been significantly improved. Thermal resistance of the samples with the circular cross section was the highest and the bionics sample with spacing of 2 mm spacing had a much longer thermal fatigue life, thus resulting in the improvement for the thermal fatigue life of the bionic samples, due to the efficient preclusion for the generation and propagation of crack at the interface of H13 block and the matrix. Crown Copyright (c) 2010 Published by Elsevier Ltd. All rights reserved.
Resumo:
The basic remelting and cladding tests with laminar plasma technology on metals have been conducted in order to demonstrate the possibility of the technology applied in material surface modification. The experimental results show that the properties of the modified layers of the cast iron surface can be improved notably by the remelting treatment and those of the stainless steel by the cladding treatment. The related results are also verified by microscopic studies such as scanning electron microscopic (SEM) observations, energy dispersive spectra (EDS) analysis and the Vickers hardness measurements of the surface modified layers.
Resumo:
Investigation of remelting and cladding processing with laminar plasma jets on several metals has been conducted looking for possible development of a new surface modification technique. The remelting tests illustrated that the new method could evidently improve the material microstructure and properties of cast iron. The cladding was done with Al2O3 ceramic powder on stainless steel. The energy dispersive spectra (EDS) analysis was used to determine the distribution of the major cladding element in the plasma-processed layers, for which the microstructure observations and hardness measurements were also performed.
Resumo:
用大气压非转移弧层流等离子体射流,对W-Mo-Cu铸铁表面进行熔凝相变强化处理,观察和测试了试样经不同弧电流处理后的表面层组织、硬度、耐磨性.结果表明,层流等离子体射流对铸铁表面的局部快速加热熔化和冷却凝固,明显改变了表面层的微观组织,提高了硬度和抗磨损性能.
Resumo:
对在大气压条件下用非转移弧层流等离子体射流熔凝强化处理的W-Mo-Cu铸铁表面,采用光学显微镜、显微硬度计、磨损试验机、扫描电镜等,观察和测试了熔凝试样的表面层组织、硬度、耐磨性和磨损形貌.结果表明,熔凝后铸铁表面为初晶渗碳体和莱氏体组成的过共晶组织,硬度和耐磨性有了明显的提高.
Resumo:
Coupling with bionic principles, an attempt to improve the wear resistance of ball bearing steel (GCr15) with biomimetic units on the surface was made using a pulsed Nd: YAG laser. Air and water film was employed as processing medium, respectively. The microstructures of biomimeitc units were examined by scanning electron microscope and X-ray diffraction was used to describe the microstructure and identify the phases as functions of different mediums as well as water film with different thicknesses. The results indicated that the microstructure zones in the biomimetic specimens processed with water film were more refined and had better wear resistance increased by 55.8% in comparison with that processed in air; a significant improvement in microhardness was achieved by laser surface melting. The application of water film provided considerable microstructural changes and much more regular grain shape in biomimetic units, which played a key role in improving the wear resistance of ball bearing steel. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
A high toughness wear resistant coating is produced by laser clad Fe-Cr-W-Ni-C alloys. The microstructural and compositional features of the laser-solidified microstructures and phase evolutions occurring during high temperature tempering at 963 K were investigated by using analytical electron microscopy with energy dispersive X-ray analysis. The clad coating possesses the hypereutectic microstructure consisted of M7C3 + (Y + M7C3) Du ring high temperature aging, the precipitation of M23C6 and M2C in austenite and in situ transformation of dendritic M7C3 to M23C6 and eutectic M7C3 to M6C occurred. The laser clad coating reveals an evident secondary hardening and superior impact wear resistance.
Resumo:
Three-dimensional discrete element face-to-face contact model with fissure water pressure is established in this paper and the model is used to simulate three-stage process of landslide under fissure water pressure in the opencast mine, according to the actual state of landslide in Panluo iron mine where landslide happened in 1990 and was fathered in 1999. The calculation results show that fissure water pressure on the sliding surface is the main reason causing landslide and the local soft interlayer weakens the stability of slope. If the discrete element method adopts the same assumption as the limit equilibrium method, the results of two methods are in good agreement; while if the assumption is not adopted in the discrete element method, the critical phi numerically calculated is less than the one calculated by use of the limit equilibrium method for the same C. Thus, from an engineering point of view, the result from the discrete element model simulation is safer and has more widely application since the discrete element model takes into account the effect of rock mass structures.
Resumo:
The microstructural and compositional features of the laser-solidified microstructures and phase evolutions occurring during high temperature tempering were investigated by using analytical electron microscopy with energy dispersive X-ray analysis. The cladded alloy, a powder mixture of Fe, Cr, W, Ni and C with a weight ratio of 10:5:1:1:1, was processed with a 3 kW continuous wave CO2 laser. The cladded coating possessed the hypoeutectic microstructure of the primary dendritic gamma-austenite and interdendritic eutectic consisting of (gamma+M7C3). The gamma-austenite is a nonequilibrium phase with extended solid solution of alloying elements. And, a great deal of fine structures, i.e., a high density of dislocations, twins, and stacking faults existed in austenite phase. During high temperature aging, the precipitation of M23C6, MC and M2C in austenite and in situ transformation of M7C3(+gamma) --> M23C6 and M7C3+gamma --> M6C occurred. The laser clad coating revealed an evident secondary hardening and superior impact wear resistance.
Resumo:
The rapidly solidified microstructural and compositional features, the precipitation and transformation of carbides during tempering, and the impact wear resistance of an iron-based alloy coating prepared by laser cladding are investigated. The clad coating alloy, a powder mixture of Fe, Cr, W, Ni, and C with a weight ratio of 10:5:1.1.1, is processed using a continuous wave CO, laser. Microstructural studies demonstrate that the coating possesses the hypoeutectic microstructure comprising the primary dendritic gamma-austenite and interdendritic eutectic consisting of gamma-austenite and M7C3 carbides. gamma-Austenite is a non-equilibrium phase with an extended solid solution of alloying elements. During high temperature tempering at 963 K for 1 h, the precipitation of M23C6, MC and M2C carbides in austenite and in situ carbide transformation of M7C3 to M23C6 and M7C3 to M6C respectively are observed. In addition, the microstructure of the laser-clad coating reveals an evident secondary hardening and a superior impact wear resistance.
Resumo:
Experiments of laser welding cast nickel-based superalloy K418 were conducted. Microstructure of the welded seam was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectrometer (EDS). Mechanical properties of the welded seam were evaluated by microhardness. The corresponding mechanisms were discussed in detail. Results show that the laser welded seam have non-equilibrium solidified microstructures consisting of Cr-Ni-Fe-C austenite solid solution dendrites as the dominant and some fine and dispersed Ni-3(Al,Ti) gamma' phase as well as little amount of MC needle carbides and particles enriched in Nb, Ti and Mo distributed in the interdendritic regions, cracks originated from the liquation of the low melting points eutectics in the HAZ grain boundary are observed, the average microhardness of the welded seam and HAZ is higher than that of the base metal due to alloy elements' redistribution of the strengthening phase gamma'. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Microstructure characterization is important for controlling the quality of laser welding. In the present work, a detailed microstructure characterization by transmission electron microscopy was carried out on the laser welding cast Ni-based superalloy K418 turbo disk and alloy steel 42CrMo shaft and an unambiguous identification of phases in the weldment was accomplished. It was found that there are gamma-FeCrNiC austenite solid solution dendrites as the matrix, (Nb, Ti) C type MC carbides, fine and dispersed Ni-3 Al gamma' phase as well as Laves particles in the interdendritic region of the seam zone. A brief discussion was given for their existence based on both kinetic and thermodynamic principles. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Exploratory experiments of laser welding cast Ni-based superalloy K418 turbo disk and alloy steel 42CrMo shaft were conducted. Microstructure of the welded seam was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive spectrometer (EDS). Mechanical properties of the welded seam were evaluated by microhardness and tensile strength testing. The corresponding mechanisms were discussed in detail. Results showed that the laser-welded seam had non-equilibrium solidified microstructures consisting of FeCr0.29Ni0.16C0.06 austenite solid solution dendrites as the dominant and some fine and dispersed Ni3Al gamma' phase and Laves particles as well as little amount of MC short stick or particle-like carbides distributed in the interdendritic regions. The average microhardness of the welded seam was relatively uniform and lower than that of the base metal due to partial dissolution and suppression of the strengthening phase gamma' to some extent. About 88.5% tensile strength of the base metal was achieved in the welded joint because of a non-full penetration welding and the fracture mechanism was a mixture of ductility and brittleness. The existence of some Laves particles in the welded seam also facilitated the initiation and propagation of the microcracks and microvoids and hence, the detrimental effects of the tensile strength of the welded joint. The present results stimulate further investigation on this field. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Molecular dynamics simulations have been carried our to study the atomic structure of the crystalline component of nanocrystalline alpha-iron. A two-dimensional computational block is used to simulate the consolidation process. It is found that dislocations are generated in the crystallites during consolidation when the grain size is large enough. The critical value of the grain size for dislocation generation appears to be about 9 nm. This result agrees with experiment qualitatively. AN dislocations that are preset in the original grains glide out during consolidation. It shows that dislocations in the crystallites we generated in consolidation process, but not in the original grains. Higher consolidation pressure results in more dislocations. Furthermore, new interfaces are found within crystallites. These interfaces might result from the special environment of nanomaterial. (C) 1998 Acta Metallurgica Inc.