50 resultados para Casemate Museum (Fort Monroe, Va.)
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
As an endangered animal group, musk deer (genus Moschus) are not only a great concern of wildlife conservation, but also of special interest to evolutionary studies due to long-standing arguments on the taxonomic and phylogenetic associations in this group. Using museum samples, we sequenced complete mitochondrial cytochrome b genes (1140 bp) of all suggested species of musk deer in order to reconstruct their phylogenetic history through molecular information. Our results showed that the cytochrome b gene tree is rather robust and concurred for all the algorithms employed (parsimony, maximum likelihood, and distance methods). Further, the relative rate test indicated a constant sequence substitution rate among all the species, permitting the dating of divergence events by molecular clock. According to the molecular topology, M. moschiferus branched off the earliest from a common ancestor of musk deer (about 700,000 years ago); then followed the bifurcation forming the M. berezouskii lineage and the lineage clustering M. fuscus, M. chrysogaster, and M. leucogaster (around 370,000 years before present), interestingly the most recent speciation event in musk deer happened rather recently (140,000 years ago), which might have resulted from the diversified habitats and geographic barriers in southwest China caused by gigantic movements of the Qinghai-Tibetan Plateau in history. Combining the data of current distributions, fossil records, and molecular data of this study, we suggest that the historical dispersion of musk deer might be from north to south in China. Additionally, in our further analyses involving other pecora species, musk deer was strongly supported as a monophyletic group and a valid family in Artiodactyla, closely related to Cervidae. (C) 1999 Academic Press.
Resumo:
大气CO_2浓度升高对整个陆地生态系统产生巨大影响。微生物是土壤中重要而又活跃的组成部分,是自然界物质循环不可缺少的成员,行使着许多对陆地生命至关重要的功能。因此,了解土壤中微生物的变化,是了解整个陆地生态系统对大气CO_2浓度升高响应的关键。木文利用在江苏省无锡市建立的稻一麦轮作FACE系统研究平台,研究了CO_2浓度升高对农田土壤微生物及VA根的影响。结果发现在FACE条件下,土壤细菌、真菌和放线菌的数量都随着小麦和水稻的生长而发生变化,分别在小麦返青期和水稻拔节期偏大,随后均有所下降,与对照相比,CO_2浓度升高增加土壤细菌、真菌和放线菌的数量;小麦根区土壤中议菌根真菌的抱子以球囊霉属(Glomus)为优势属,以摩西球囊霉(Glomus mosseae)为优势种;在小麦拔节期和孕穗期观察到VA根真菌侵染,侵染率在拔节期偏高,后逐渐降低,CO_2浓度升高使小麦VA根侵染率增加,而在水稻根系没有观察到VA根真菌侵染;根系活力分别在小麦拔节期和水稻抽穗期偏高,到成熟期均降低,CO_2浓度升高使根系活力增强;小麦VA根侵染率与根系活力存在正相关关系。总之,大气CO_2浓度升高对农田土壤细菌、真菌和放线菌的数量、VA根侵染率及根系活力都表现出一定的促进作用。