333 resultados para Carp Cyprinus-carpio
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Abstract—Burst-and-coast is the most common locomotion type in freely routine swimming of koi carps (Cyprinus carpio koi), which consists of a burst phase and a coast phase in each cycle and mostly leads to a straight-line trajectory. Combining with the tracking experiment, the flow physics of koi carp’s burst-andcoast swimming is investigated using a novel integrated CFD method solving the body-fluid interaction problem. The dynamical equations of a deforming body are formulated. Following that, the loose-coupled equations of the body dynamics and the fluid dynamics are numerically solved with the integrated method. The two burst modes, MT (Multiple Tail-beat) and HT (Half Tail-beat), which have been reported by the experiments, are investigated by numerical simulations in this paper. The body kinematics is predicted and the flow physics is visualized, which are in good agreement with the corresponding experiments. Furthermore, the optimization on the energy cost and several critical control mechanisms in burst-and-coast swimming of koi carps are explored, by varying the parameters in its selfpropelled swimming. In this paper, energetics is measured by the two mechanical quantities, total output power CP and Froude efficiency Fr. Results and discussion show that from the standpoint of mechanical energy, burst-and-coast swimming does not actually save energy comparing with steady swimming at the same average speed, in that frequently changing of speed leads to decrease of efficiency.
Resumo:
It has been demonstrated that growth hormone (GH) transgenic fish often posses a trait for fast growth. Here, we investigated the growth of F-4 'all-fish' GH transgenic carp Cyprinus carpio and their serum GH levels for a year. The results showed that F-4 all-fish GH transgenic carp were significantly larger in body mass (c. two-fold, P < 0 center dot 001) and body length (c. 1 center dot 3 fold, P < 0 center dot 001), compared with the non-transgenic group. The discrepancy of serum GH levels between the transgenic carp group and control group is 54 fold, when the water temperature was 12-34 degrees C. When the water temperature decreased to 3 center dot 5 degrees C in January, the discrepancy was 256 fold. The serum GH level of the transgenic group was relatively constant, while that of control varied greatly based on month and water temperature. The changes of growth rates between the transgenic group and the control group were similar for a year. Taken together, the results indicated that F-4 all-fish GH transgenic carp had not only higher and constant serum GH levels but also a significant fast-growing effect, compared with the control. To our knowledge, this is the first report on a one-year investigation of growth trait and serum growth hormone level in F-4 all-fish GH transgenic carp.
Resumo:
Food consumption, number of movements and feeding hierarchy of juvenile transgenic common carp Cyprinus carpio and their size-matched non-transgenic conspecifics were measured under conditions of limited food supply. Transgenic fish exhibited 73 center dot 3% more movements as well as a higher feeding order, and consumed 1 center dot 86 times as many food pellets as their non-transgenic counterparts. After the 10 day experiment, transgenic C. carpio had still not realized their higher growth potential, which may be partly explained by the higher frequency of movements of transgenics and the 'sneaky' feeding strategy used by the non-transgenics. The results indicate that these transgenic fish possess an elevated ability to compete for limited food resources, which could be advantageous after an escape into the wild. It may be that other factors in the natural environment (i.e. predation risk and food distribution), however, would offset this advantage. Thus, these results need to be assessed with caution.
Resumo:
Natural killer (NK) cell enhancing factor (NKEF) belongs to the newly defined peroxiredoxin (Prx) family. Its functions are to enhance NK cell cytotoxicity and to protect DNA and proteins from oxidative damage. In this study, a partial cDNA sequence of carp NKEF-B was isolated from thymus cDNA library. Subsequently, the full-length cDNA of carp NKEF-B was obtained by means of 3' and 5' RACE, respectively. The full-length cDNA of carp NKEF-B was 1022 bp, consisting of a 73 bp 5'-terminal untranslated region (UTR), a 355 bp T-terminal UTR, and a 594 bp open reading frame coding for a protein of 197 amino acids. Carp NKEF-B contained two consensus Val-Cys-Pro (VCP) motifs and three consensus cysteine (Cys-51, Cys-70 and Cys-172) residues. Sequence comparison showed that the deduced amino acid sequence of carp NKEF-B had an overall similarity of 74-96% to that of other species homologues. Phylogenetic analysis revealed that carp NKEF-B forms a cluster with other known teleost NKEF-Bs. Then, by PCR we obtained a 5.1 -k long genomic DNA of carp NKEF-B containing six exons and five introns. Realtime RT-PCR results showed that carp NKEF-B gene was predominantly detected in kidney and head kidney under un-infected conditions. Whereas under SVCV-infection condition, the expression of NKEF-B gene was significantly increased in blood cells, gill, intestine and spleen, but maintained in liver, and decreased significantly in kidney and head kidney. Finally, the rNKEF-B was constructed and expressed in Escherichia coli. By using an antibody against carp rNKEF-B, immunohistochemical study further indicated that NKEF-B positive cells are mainly some RBCs and a few epithelial cells in gill and intestine, and that under SVCV-infection condition, these positive cells or positive products in their cytoplasm were mainly increased in gill and spleen sections of carp. The results obtained in the present study will help to understand the function of NKEF-B in teleost innate immunity. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Critical swimming speeds (U-crit) and morphological characters were compared between the F-4 generation of GH-transgenic common carp Cyprinus carpio and the non-transgenic controls. Transgenic fish displayed a mean absolute U-crit value 22.3% lower than the controls. Principal component analysis identified variations in body shape, with transgenic fish having significantly deeper head, longer caudal length of the dorsal region, longer standard length (L-S) and shallower body and caudal region, and shorter caudal length of the ventral region. Swimming speeds were related to the combination of deeper body and caudal region, longer caudal length of the ventral region, shallower head depth, shorter caudal length of dorsal region and L-S. These findings suggest that morphological variations which are poorly suited to produce maximum thrust and minimum drag in GH-transgenic C. carpio may be responsible for their lower swimming abilities in comparison with non-transgenic controls.
Resumo:
Transgenic animals with improved qualities have the potential to upset the ecological balance of a natural environment. We investigated metabolic rates of 'all-fish' growth hormone (GH) transgenic common carp under routine conditions and during starvation periods to determine whether energy stores in transgenic fish would deplete faster than controls during natural periods of starvation. Before the oxygen uptake was measured, the mean daily feed intake of transgenic carp was 2.12 times greater than control fish during 4 days of feeding. The average oxygen uptake of GH transgenic fish was 1.32 times greater than control fish within 96 h of starvation, but was not significantly different from controls between 96 and 144 h of starvation. At the same time, GH transgenic fish did not deplete energy reserves at a faster rate than did the controls, as the carcass energy contents of the two groups following a 60-d starvation period were not significantly different. Consequently, we suggest that increased routine oxygen uptake in GH transgenic common carp over that of control fish may be mainly due to the effects of feeding, and not to an increase in basal metabolism. GH transgenic fish are similar to controls in the regulation of metabolism to normally distribute energy reserves during starvation. (c) 2008 Published by Elsevier B.V.
Resumo:
A wrap method adaptation combined with AutoCAD2005 and Scion Image for Windows were used to determine the surface area of a fish. Compared with the corresponding r(2) and F of many models, the most accurate formula: S = 752.15W(0.675) (r(2) = 0.999, F = 18362.94, P < 0.0001) for estimating the surface area of common carp was obtained. Similarly, the fin formula: S = 1834.12W(0.708) (r(2) = 0.992, F = 2690.47, P < 0.0001) was also obtained for the same purpose. It was proven that these two formulae gave good estimates of surface and fin areas of four strains of common carp: Yellow-river carp, fancy carp, mirror carp and Xingguo red carp.
Resumo:
SLP-76 is an important member of the SLP-76 family of adapters, and it plays a key role in TCR signaling and T cell function. Partial cDNA sequence of SLP-76 of common carp (Cyprinus carpio L.) was isolated from thymus cDNA Library by the method of suppression subtractive hybridization (SSH). Subsequently, the full length cDNA of carp SLP-76 was obtained by means of 3' RACE and 5' RACE, respectively. The full Length cDNA of carp SLP-76 was 2007 bp, consisting of a T-terminal untranslated region (UTR) of 285 bp, a T-terminal. UTR of 240 bp, and an open reading frame of 1482 bp. Sequence comparison showed that the deduced amino acid sequence of carp SLP-76 had an overall similarity of 34-73% to that of other species homotogues, and it was composed of an NH2-terminal domain, a central proline-rich domain, and a C-terminal SH2 domain. Amino acid sequence analysis indicated the existence of a Gads binding site R-X-X-K, a 10-aa-long sequence which binds to the SH3 domain of LCK in vitro, and three conserved tyrosine-containing sequence in the NH2-terminal domain. Then we used PCR to obtain a genomic DNA which covers the entire coding region of carp SLP-76. In the 9.2 k-long genomic sequence, twenty one exons and twenty introns were identified. RT-PCR results showed that carp SLP-76 was expressed predominantly in hematopoietic tissues, and was upregulated in thymus tissue of four-month carp compared to one-year old carp. RT-PCR and virtual northern hybridization results showed that carp SLP-76 was also upregulated in thymus tissue of GH transgenic carp at the age of four-months. These results suggest that the expression level of SLP-76 gene may be related to thymocyte development in teleosts. (c) 2007 Published by Elsevier Ltd.
Resumo:
Partial cDNA sequences of TCR gamma and CD3 gamma/delta were isolated from the thymus of common carp (Cyprinus carpio L.) by the method of suppression subtractive hybridization (SSH). Subsequently the full length cDNAs of carp TCR gamma and CD3 gamma/delta were obtained by means of 3' RACE and 5' RACE, respectively. The full length of carp TCR gamma chain is 1368 bp and encodes 326 amino acids including a signal peptide region of 19 amino acids and a transmembrane region of 23 amino acids at the C-terminal region from aa 291 to 313. The V region of carp TCR gamma contains 109 amino acids, the core motif FGXG in J segment was also found in carp TCR gamma. The C region of carp TCR gamma contains the characteristic CX6PX6WX45C motif. The CP region of carp TCR C gamma contains 37 amino acids. The full length of carp CD3 gamma/delta is 790 bp and encodes 175 amino acids including a signal peptide region of 17 amino acids and a transmembrane region of 23 amino acids from aa 93 to 115. Similar to other known CD3 gamma/delta s, four cysteine residues in the extracellular domain and an immunoreceptor tyrosine-based activation motif ITAM (YxxL/Ix6-8YxxL/I) in the intracellular domain are also included in carp CD3 gamma/delta. Differing from other known CD3 gamma/delta s, carp CD3 gamma/delta tacks the CXXCXE motif in the extracellular domain. RTPCR analysis demonstrated that the expression of TCR gamma gene was mainly in the thymus and gill of 6-month carp, but in 18-month carp, TCR gamma gene was detected in all the examined tissues. The expression of CD3 gamma/delta gene was detected in all examined tissues of 6 and 18-month carp; among them, the highest expression level was in the thymus of 6-month carp. In situ hybridization showed that CD3 gamma/delta-expressing cells were widely distributed in the head kidney, spleen and kidney of carp, whereas in the thymus, they were densely distributed in the lymphoid outer zone and scattered in the epithelioid inner zone. (c) 2007 Published by Etsevier Ltd.
Resumo:
Partial cDNA sequences of both CD8 beta and CD4-like (CD4L) genes of common carp (Cyprinus carpio L.) were isolated from thymus cDNA library by the method of suppression subtractive hybridization (SSH). Subsequently the full length cDNAs of carp CD8 and CD4L were obtained by means of 3' RACE and 5' RACE, respectively. The full length cDNA of carp CD8 is 1164 bp and encodes 207 amino acids including a signal peptide region of 24 amino acids, a transmembrane region of 23 amino acids from aa 167 to aa189 and an immunoglobulin V-set from aa 19 to aa 141. Similar to other species CD8 beta s,carp CD8 beta also lacks p56(lck) domain in the cytoplasmic region. The full length cDNA of carp CD4L is 2001 bp and encodes 458 amino acids including four immunoglobulin (Ig)-like domains in the extracellular region, a transmembrane region of 23 amino acids at the C-terminal region from aa 402 to aa 424 and a cytoplasmic tail. Similar to mammalian, avian CD4s and fugu CD4L, carp CD4L also has the conserved p56(lck) tyrosine kinase motif (C-X-C) in the cytoplasmic region. RT-PCR analysis demonstrated that carp CD8 beta and CD4L genes were both expressed predominantly in thymus. The results from this study can be used to understand the evolution of both the CD8 beta and CD4 molecules which can be used as markers for cytotoxic and helper T cells in carp. (c) 2007 Published by Elsevier Ltd.
Resumo:
In this study, an alternative splicing transcript GtH-alpha 291 was identified by RT-PCR, which is 291 nt and exists not only in the pituitary but also in the ovary in common carp Cyprinus carpio. The analysis of GtH-alpha 291 amino acid sequence by the SignalP server predicted that the 'missing segment' might characterize as a signal peptide. In the secretion experiment, GtH-alpha 357 subunit could be secreted out of HeLa cells while GtH-alpha 291 could not, which confirmed the prediction. Co-immunoprecipitation assay proved that GtH-alpha 291 subunit is able to interact with both FSH-beta and LH-beta as GtH-alpha 357 does. This is the first report concerning an alternative splicing transcript of a GtH alpha subunit. Further studies are necessary to elucidate the specific role of this variant in the regulation of gonadal development and sexual maturation. (c) 2007 The Authors.
Resumo:
Generating transgenic fish with desirable traits (e.g., rapid growth, larger size, etc.) for commercial use has been hampered by concerns for biosafety and competition if these fish are released into the environment. These obstacles may be overcome by producing transgenic fish that are sterile, possibly by inhibiting hormones related to reproduction. In vertebrates, synthesis and release of gonadotropin (GtH) and other reproductive hormones is mediated by gonadotropin-releasing hormone (GnRH). Recently two cDNA sequences encoding salmon-type GnRH (sGnRH) decapeptides were cloned from common carp (Cyprinus carpio). This study analyzed the expression of these two genes using real-time polymerase chain reaction (RT-PCR) in different tissues carp at varying developmental stages. Transcripts of both genes were detected in ovary and testis in mature and regressed, but not in juvenile carp. To evaluate the effects of sGnRH inhibition, the recombinant gene CAsGnRHpc-antisense, expressing antisense sGnRH RNA driven by a carp beta-actin promoter, was constructed. Blocking sGnRH expression using antisense sGnRH significantly decreased GtH in the blood of male transgenic carp. Furthermore, some antisense transgenic fish had no gonadal development and were completely sterile. These data demonstrate that sGnRH is important for GtH synthesis and development of reproductive organs in carp. Also, the antisense sGnRH strategy may prove effective in generating sterile transgenic fish, eliminating environmental concerns these fish may raise. (c) 2007 Published by Elsevier B.V.
Resumo:
The complete genome of spring viraemia of carp virus (SVCV) strain A-1 isolated from cultured common carp (Cyprinus carpio) in China was sequenced and characterized. Reverse transcription-polymerase chain reaction (RT-PCR) derived clones were constructed and the DNA was sequenced. It showed that the entire genome of SVCV A-1 consists of 11,100 nucleotide base pairs, the predicted size of the viral RNA of rhabdoviruses. However, the additional insertions in bp 4633-4676 and bp 4684-4724 of SVCV A-1 were different from the other two published SVCV complete genomes. Five open reading frames (ORFs) of SVCV A-1 were identified and further confirmed by RT-PCR and DNA sequencing of their respective RT-PCR products. The 5 structural proteins encoded by the viral RNA were ordered 3'-N-P-M-G-L-5'. This is the first report of a complete genome sequence of SVCV isolated from cultured carp in China. Phylogenetic analysis indicates that SVCV A-1 is closely related to the members of the genus Vesiculovirus, family Rhabdoviridae.
Resumo:
The toxicity of hepatotoxic microcystins produced mainly by Microcystis aeruginosa in mammals and fishes was well studied in recent years. However, there were scarcely reports in toxic effects of microcystins on isolated hepatocytes of fishes, especially investigation of microcystin-induced apoptosis and/or necrosis in carp hepatocytes. In the present study, the isolated hepatocytes of common carp were exposed to various concentrations of microcystins (0.01, 0.1, 1, 10, 100, 1000 mu g L-1) for 2, 4, 8, 16 and 24 h, respectively, and cytotoxicity of microcystins in the toxin-treated cells was determined. Results of this study showed that cytotoxicity of microcystins on carp hepatocytes was time and dose-dependent, and the approximate LC50 of microcystins in carp hepatocytes was 169.2 mu g L-1. The morphological changes typical of apoptosis, such as blebbing of cell membrane, condensation and fragmentation of cell nucleus were observed in the hepatocytes exposed to microcystins (1, 10 and 100 mu g L-1) using fluorescence and differential interference contrast microscopy. Agarose gel electrophoresis of DNA demonstrated a typical apoptotic "ladder pattern" in microcystin-treated hepatocytes after 16 h of exposure. Results of the present study indicated that the form of cell death in microcystin-treated hepatocytes depend on the exposure dose of toxin. When lower concentration of microcystins (10 and 100 mu g L-1) was used for exposure, carp hepatocytes died in apoptosis while, when higher one used (1000 mu g L-1), they died in the form of necrosis. (C) 2006 Elsevier Inc. All rights reserved.
Resumo:
Sonic hedgehog (Shh), one of important homologous members of the hedgehog (Hh) family in vertebrates, encodes a signaling molecule that is involved in short- or long-range patterning processes during embryogenesis. In zebrafish, maternal activity of Hh was found to be contributing to the formation of primary motoneurons. However, we found that all of the known Hh members were not maternally expressed in zebrafish. In the present study, full-length cDNA of common carp (Cyprinus carpio) Shh (cShh) was gained by degenerate reverse-transcription PCR (RT-PCR) and rapid amplification of cDNA ends. Sequence comparison shows that cShh coding sequence shares 93.4% identity with zebrafish Shh coding sequence, and their corresponding protein sequences have 91.9% similarity. Comparative analysis of Shh genomic sequences and Hh protein sequences from different species revealed that the genomic structures of Hh are conserved from invertebrate to vertebrate. In contrast to zebrafish Shh, cShh transcripts were detectable from one-cell stage by RT-PCR analysis. Whole mount in situ hybridization verified the maternal expression of Shh in common carp, which is, to our knowledge, the first report of that in vertebrates, suggesting that Shh might be responsible for the maternal Hh activity in common carp.