66 resultados para Cardinal Number

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of dispersed short-fatigue-cracks is analysed based on the equilibrium of crack-number-density (CND). By separating the mean value and the stochastic fluctuation of local CND, the equilibrium equation of overall CND is derived. Comparing with the mean-field equilibrium equation, the equilibrium equation of overall CND has different forms in the expression of crack-nucleation-rate or crack-growth-rate. The simulation results are compared with experimental measurements showing the stochastic analyses provide consistent tendency with experiments. The discrepancy in simulation results between overall CND and mean-field CND is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A dimensionless number, termed as response number in Zhao [Archive of Applied Mechanics 68 (1998) 524], has been suggested for the dynamic plastic response of beams and plates made up of rigidly perfect plastic materials subjected to dynamic loading. Many theoretical and experimental results can be reformulated into new concise forms with the response number. The concept of a new dimensionless number, response number, termed as Rn(n), is generalized in Zhao [Forschung im Ingenieurwesen 65 (1999) 107] to study the elastic, plastic, dynamic elastic as well as dynamic plastic buckling problems of columns, plates as well as shells. The response number Rn(n) is generalized to the dynamic behaviour of shells of various shapes in the present paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A dimensionless number, termed response number, is applied to the dynamic plastic response of plates subjected to dynamic loading. Many theoretical and experimental results presented by different researchers are reformulated into new concise forms with the response number. The advantage of the new forms is twofold: (1) they are more physically meaningful, and (2) they are independent of the choice of units, thus, they have wider range of applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A perturbation method is used to examine the linear instability of thermocapillary convection in a liquid bridge of floating half-zone filled with a small Prandtl number fluid. The influence of liquid bridge volume on critical Marangoni number and flow features is analyzed. The neutral modes show that the instability is mainly caused by the bulk flow that is driven by the nonuniform thermocapillary forces acting on the free surface. The hydrodynamic instability is dominant in the case of small Prandtl number fluid and the first instability mode is a stationary bifurcation. The azimuthal wave number for the most dangerous mode depends on the liquid bridge volume, and is not always two as in the case of a cylindrical liquid bridge with aspect ratio near 0.6. Its value may be equal to unity when the liquid bridge is relatively slender.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To overcome the difficulty in the DNS of compressible turbulence at high turbulent Mach number, a new difference scheme called GVC8 is developed. We have succeeded in the direct numerical simulation of decaying compressible turbulence up to turbulent Mach number 0.95. The statistical quantities thus obtained at lower turbulent Mach number agree well with those from previous authors with the same initial conditions, but they are limited to simulate at lower turbulent Mach numbers due to the so-called start-up problem. The energy spectrum and coherent structure of compressible turbulent flow are analysed. The scaling law of compressible turbulence is studied. The computed results indicate that the extended self-similarity holds in decaying compressible turbulence despite the occurrence of shocklets, and compressibility has little effects on relative scaling exponents when turbulent Mach number is not very high.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A dimensionless number, termed response number in the present paper, is suggested for the dynamic plastic response of beams and plates made of rigid-perfectly plastic materials subjected to dynamic loading. It is obtained at dimensional reduction of the basic governing equations of beams and plates. The number is defined as the product of the Johnson's damage number and the square of the half of the slenderness ratio for a beam; the product of the damage number and the square of the half of the aspect ratio for a plate or membrane loaded dynamically. Response number can also be considered as the ratio of the inertia force at the impulsive loading to the plastic limit load of the structure. Three aspects are reflected in this dimensionless number: the inertia of the applied dynamic loading, the resistance ability of the material to the deformation caused by the loading and the geometrical influence of the structure on the dynamic response. For an impulsively loaded beam or plate, the final dimensionless deflection is solely dependent upon the response number. When the secondary effects of finite deflections, strain-rate sensitivity or transverse shear are taken into account, the response number is as useful as in the case of simple bending theory. Finally, the number is not only suitable to idealized dynamic loads but also applicable to dynamic loads of general shape.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Peclet number is a useful index to estimate the importance of sedimentation as compared to the Brownian motion. However, how to choose the characteristic length scale for the Peclet number evaluation is rather critical because the diffusion length increases as the square root of the time whereas the drifting length is linearly related to time. Our Brownian dynamics simulation shows that the degree of sedimentation influence on the coagulation decreases when the dispersion volume fraction increases. Therefore using a fixed length, such as the diameter of particle, as the characteristic length scale for Peclet number evaluation is not a good choice when dealing with the influence of sedimentation on coagulation. The simulations demonstrated that environmental factors in the coagulation process, such as dispersion volume fraction and size distribution, should be taken into account for more reasonable evaluation of the sedimentation influence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The linear instability analysis of the present paper shows that the thermocapillary convection in a half floating zone of larger Prandtl number has a steady instability mode w(i) = 0 and m = 1 for a fat liquid bridge V = 1.2 with small geometrical aspect ratio A = 0.6. This conclusion is different from the usual idea of hydrothermal instability, and implies that the instability of the system may excite a steady and axial asymmetric state before the onset of oscillation in the ease of large Prandtl number.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is proved that Johnson's damage number is the sole similarity parameter for dynamic plastic shear failure of structures loaded impulsively, therefore, dynamic plastic shear failure can be understood when damage number reaches a critical value. It is suggested that the damage number be generally used to predict the dynamic plastic shear failure of structures under various kinds of dynamic loads (impulsive loading, rectangular pressure pulse, exponential pressure pulse, etc.,). One of the advantages for using the damage number to predict such kind of failure is that it is conveniently used for dissimilar material modeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Processes of the onset oscillation in the thermocapillaxy convection under the Earth's gravity are investigated by the numerical simulation and experiments in a floating half zone of large Prandtl number with different volume ratio. Both computational and experimental results show that the steady and axisymmetric convection turns to the oscillatory convection of m=1 for the slender liquid bridge, and to the oscillatory convection before a steady and 3D asymmetric state for the case of a fat liquid bridge. It implies that, there are two critical Marangoni numbers related, respectively, to these two bifurcation transitions for the fat liquid bridge. The computational results agree with the results of ground-based experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrothermal wave was investigated numerically for large-Prandtl-number fluid (Pr = 105.6) in a shallow cavity with different heated sidewalls. The traveling wave appears and propagates in the direction opposite to the surface flow (upstream) in the case of zero gravity when the applied temperature difference grows and over the critical value. The phase relationships of the disturbed velocity, temperature and pressure demonstrate that the traveling wave is driven by the disturbed temperature, which is named hydrothermal wave. The hydrothermal wave is so weak that the oscillatory flow field and temperature distribution can hardly be observed in the liquid layer. The exciting mechanism of hydrothermal wave is analyzed and discussed in the present paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A linear stability analysis is applied to determine the onset of oscillatory thermocapillary convection in cylindrical liquid bridges of large Prandtl numbers (4 <= Pr <= 50). We focus on the relationships between the critical Reynolds number Re-c, the azimuthal wave number m, the aspect ratio F and the Prandtl number Pr. A detailed Re-c-Pr stability diagram is given for liquid bridges with various Gamma. In the region of Pr > 1, which has been less studied previously and where Re, has been usually believed to decrease with the increase of Pr, we found Re-c exhibits an early increase for liquid bridges with Gamma around one. From the computed surface temperature gradient, it is concluded that the boundary layers developed at both solid ends of liquid bridges strengthen the stability of basic axisymmetric thermocapillary convection at large Prandtl number, and that the stability property of the basic flow is determined by the "effective" part of liquid bridge. (c) 2008 Published by Elsevier Ltd on behalf of COSPAR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Linear stability analysis was performed to study the mechanism of transition of thermocapillary convection in liquid bridges with liquid volume ratios ranging from 0.4 to 1.2, aspect ratio of 0.75 and Prandtl number of 100. 2-D governing equations were solved to obtain the steady axi-symmetric basic flow and temperature distributions. 3-D perturbation equations were discretized at the collocation grid points using the Chebyshev-collocation method. Eigenvalues and eigenfunctions were obtained by using the Q-R. method. The predicted critical Marangoni numbers and critical frequencies were compared with data from space experiments. The disturbance of the temperature distribution on the free surface causes the onset of oscillatory convection. It is shown that the origin of instability is related to the hydrothermal origin for convections in large-Prandtl-number liquid bridges. (C) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental study of the interaction between shock wave and turbulent boundary layer induced by blunt fin has been carried out at M-infinity = 7.8 using oil flow visualization and simultaneous measurements of fluctuating wall pressure and heat transfer. This paper presents the effects of Mach number on turbulent separation behaviours induced by blunt fin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Response number R-n(n), proposed in [3, 4], is an important independent dimensionless number for the dynamic response of structures [2]. In this paper, the response number is applied to the dynamic plastic response of the well-known Parkes' problem, i.e., beams struck by concentrated mass.