19 resultados para Carbon sink
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Although studies on carbon burial in lake sediments have shown that lakes are disproportionately important carbon sinks, many studies on gaseous carbon exchange across the water-air interface have demonstrated that lakes are supersaturated with CO2 and CH4 causing a net release of CO2 and CH4 to the atmosphere. In order to more accurately estimate the net carbon source/sink function of lake ecosystems, a more comprehensive carbon budget is needed, especially for gaseous carbon exchange across the water-air interface. Using two methods, overall mass balance and gas exchange and carbon burial balance, we assessed the carbon source/sink function of Lake Donghu, a subtropical, eutrophic take, from April 2003 to March 2004. With the overall mass balance calculations, total carbon input was 14 905 t, total carbon output was 4950 1, and net carbon budget was +9955 t, suggesting that Lake Donghu was a great carbon sink. For the gas exchange and carbon burial balance, gaseous carbon (CO2 and CH4) emission across the water-air interface totaled 752 t while carbon burial in the lake sediment was 9477 t. The ratio of carbon emission into the atmosphere to carbon burial into the sediment was only 0.08. This low ratio indicates that Lake Donghu is a great carbon sink. Results showed good agreement between the two methods with both showing Lake Donghu to be a great carbon sink. This results from the high primary production of Lake Donghu, substantive allochthonous carbon inputs and intensive anthropogenic activity. Gaseous carbon emission accounted for about 15% of the total carbon output, indicating that the total output would be underestimated without including gaseous carbon exchange. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Concentrations and carbon isotopic (C-14, C-13) compositions of black carbon (BC) were measured for three sediment cores collected from the Changjiang River estuary and the shelf of the East China Sea. BC concentrations ranged from 0.02 to 0.14 mg/g (dry weight), and accounted for 5% to 26% of the sedimentary total organic carbon (TOC) pool. Among the three sediment cores collected at each site, sediment from the Changjiang River estuary had relatively high BC contents compared with the sediments from the East China Sea shelf, suggesting that the Changjiang River discharge played an important role in the delivery of BC to the coastal region. Radiocarbon measurements indicate that the ages of BC are in the range of 6910 to 12250 years old B. P. (before present), that is in general, 3700 to 9000 years older than the C-14 ages of TOC in the sediments. These variable radiocarbon ages suggest that the BC preserved in the sediments was derived from the products of both biomass fire and fossil fuel combustion, as well as from ancient rock weathering. Based on an isotopic mass balance model, we calculated that fossil fuel combustion contributed most (60%. 80%) of the BC preserved in these sediments and varied with depth and locations. The deposition and burial of this "slow-cycling" BC in the sediments of the East China Sea shelf represent a significant pool of carbon sink and could greatly influence carbon cycling in the region.
Resumo:
The seasonal evolution of dissolved inorganic carbon (DIC) and CO2 air-sea fluxes in the Jiaozhou Bay was investigated by means of a data set from four cruises covering a seasonal cycle during 2003 and 2004. The results revealed that DIC had no obvious seasonal variation, with an average concentration of 2035 mu mol kg(-1) C in surface water. However, the sea surface partial pressure of CO2 changed with the season. pCO(2) was 695 mu atm in July and 317 mu atm in February. Using the gas exchange coefficient calculated with Wanninkhof's model, it was concluded that the Jiaozhou Bay was a source of atmospheric CO, in spring, summer, and autumn, whereas it was a sink in winter. The Jiaozhou Bay released 2.60 x 10(11) mmol C to the atmosphere in spring, 6.18 x 10(11) mmol C in summer, and 3.01 x 10(11) mmol C in autumn, whereas it absorbed 5.32 x 10(10) mmol C from the atmosphere in winter. A total of 1.13 x 10(11) mmol C was released to the atmosphere over one year. The behaviour as a carbon source/sink obviously varied in the different regions of the Jiaozhou Bay. In February, the inner bay was a carbon sink, while the bay mouth and the Outer bay were carbon sources. In June and July, the inner and Outer bay were carbon sources, but the strength was different, increasing from the inner to the outer bay. In November, the inner bay was a carbon source, but the bay Mouth was a carbon sink. The outer bay was a weaker CO2 Source. These changes are controlled by many factors, the most important being temperature and phytoplankton. Water temperature in particular was the main factor controlling the carbon dioxide system and the behaviour of the Jiaozhou Bay as a carbon source/sink. The Jiaozhou Bay is a carbon dioxide source when the water temperature is higher than 6.6 degrees C. Otherwise, it is a carbon sink. Phytoplankton is another controlling factor that may play an important role in behaviour as a carbon source or sink in regions where the source or sink nature is weaker.
Resumo:
Physical protection is one of the important ways to stabilize organic carbon in soils. In order to understand the role of soils as a carbon sink or source in global climatic change and carbon cycles and properly manage soils as a carbon sink, we ought to know how many organic carbon (OC) in a given soil could be protected. By a density fractionation approach and ultrasonic technique, each soil sample was divided into three fractions: free light fraction (free-LF), occluded fraction (occluded-LF) and heavy fraction (HF). The obtained fractions were analyzed for total OC content, carbohydrate content and recalcitrant OC content. The results showed: (i) In the whole soil profile, dominance of OC consistently decreased in the following order: HF, free-LF, occluded-LF. This suggested that OC in soils were mostly protected. From 0-10 to 60-80 cm horizons, the OC in free-LF decreased from 25.27% to 3.72%, while OC in HF they were increased from 72.57% to 95.39%. The OC in occluded-LF was between 2.16% and 0.89%. (ii) Organic carbon recalcitrance in free-LF was similar to that in HF, and was even higher than that in HF below the surface horizon. This suggested that free-LF was not always the most fresh and non-decomposed fraction. OM quality of HF was higher than that of free-LF in the surface 10 cm below, namely the protected OM had higher quality than free OM in these horizons.
Resumo:
Carbon cycle is connected with the most important environmental issue of Global Change. As one of the major carbon reservoirs, oceans play an important part in the carbon cycle. In recent years, iron seems to give us a good news that oceanic iron fertilization could stimulate biological productivity as CO2 sink of human-produced CO2. Oceanic iron fertilization experiments have verified that adding iron into high nutrient low chlorophyll (HNLC) seawaters can increase phytoplankton production and export organic carbon, and hence increase carbon sink of anthropogenic CO2, to reduce global warming. In sixty days, the export organic carbon could reach 10 000 times for adding iron by model prediction and in situ experiment, i.e. the atmospheric CO2 uptake and inorganic carbon drawdown in upper seawaters also have the same magnitude. Therefore, oceanic iron fertilization is one of the strategies for increasing carbon sink of anthropogenic CO2. The paper is focused on the iron fertilization, especially in situ ocean iron experiments in order that the future research is more efficient.
Resumo:
To understand the carbon dynamics and correlation between net ecosystem CO2 exchange and environmental conditions of alpine meadow ecosystem in the Qinghai-Tibetan Plateau, we analyzed two years (from 2002 to 2003) data measured by eddy covariance method. The results showed that in those two years the ecosystem behaved as the carbon sink and absorbed carbon dioxide 286.74 g/(m2•a) and 284.94 g/(m2•a),respectively. It suggested that there were not distinct correlations between the daily CO2 flux (net ecosystem exchange, NEE) and photosynthetic photon flux density (PPFD) and soil water content (SWC) while daily NEE was evidently corresponded to air temperature. The "turning point air temperature", was meant at that air temperature, when the increase rate of ecosystem photosynthesis (gross primary production, GPP) began to be above the increase rate of ecosystem respiration (Reco), and was 2.47 ℃ by an exponential-linear model established in the alpine meadow. Then, if the precipitation and PPFD doesnt change greatly, moreover, the alpine meadow keeps balance (not lots of variations among years, especially in plant species, plant growth), the capacity of alpine meadow ecosystem carbon sink will be enhanced when the increase of air temperature at above 2.47 ℃, and decreased when that of air temperature at below 2.47 ℃.
Resumo:
Thus far, grassland ecosystem research has mainly been focused on low-lying grassland areas, whereas research on high-altitude grassland areas, especially on the carbon budget of remote areas like the Qinghai-Tibetan plateau is insufficient. To address this issue, flux of CO2 were measured over an alpine shrubland ecosystem (37 degrees 36'N, 101 degrees 18'E; 325 above sea level [a. s. l.]) on the Qinghai-Tibetan Plateau, China, for 2 years (2003 and 2004) with the eddy covariance method. The vegetation is dominated by formation Potentilla fruticosa L. The soil is Mol-Cryic Cambisols. To interpret the biotic and abiotic factors that modulate CO2 flux over the course of a year we decomposed net ecosystem CO2 exchange (NEE) into its constituent components, and ecosystem respiration (R-eco). Results showed that seasonal trends of annual total biomass and NEE followed closely the change in leaf area index. Integrated NEE were -58.5 and -75.5 g C m(-2), respectively, for the 2003 and 2004 years. Carbon uptake was mainly attributed from June, July, August, and September of the growing season. In July, NEE reached seasonal peaks of similar magnitude (4-5 g C m(-2) day(-1)) each of the 2 years. Also, the integrated night-time NEE reached comparable peak values (1.5-2 g C m(-2) day(-1)) in the 2 years of study. Despite the large difference in time between carbon uptake and release (carbon uptake time < release time), the alpine shrubland was carbon sink. This is probably because the ecosystem respiration at our site was confined significantly by low temperature and small biomass and large day/night temperature difference and usually soil moisture was not limiting factor for carbon uptake. In general, R-eco was an exponential function of soil temperature, but with season-dependent values of Q(10). The temperature-dependent respiration model failed immediately after rain events, when large pulses of R-eco were observed. Thus, for this alpine shrubland in Qinghai-Tibetan plateau, the timing of rain events had more impact than the total amount of precipitation on ecosystem R-eco and NEE.
Resumo:
Scientists have paid much attention to the greenhouse effects and the greenhouse gases for the fact of global warming. There are many uncertainties in the prediction of future climatic change. One of the important reasons causing the uncertainties is insufficient researches of the sources and sinks of greenhouse gases, especially, there is a missing sink in the global carbon cycle. The recent researches proposal that there may be an important carbon sink in the middle-latitude terrestrial ecosystems (vegetation and soil) in the North Hemisphere, despite that there is much disputation about its position and amplitude. Chinese loess is located in the middle latitude area in the North Hemisphere, what kind of role does it play in and how does it influence on the balance of the global greenhouse gases budget? For this reason, many samples were taken and analyzed from wide range and multi-stratum of Chinese loess to understand characteristics of major greenhouse gases in loess and loess possible effect on global greenhouse gas budget. Using self-made spiral corer, we totally took 81 gas samples and 65 soil samples from 7 loess profiles in China such as Zhaitang loess section of Beijing, Pianguan, Xingxian, Lishi, Puxian, Jishan loess section of Shanxi Province, and Luochuan loess section of Shaanxi Province. The gas concentrations for CO_2, CH_4 and N_2O, the contents of N_2, O_2 and carbonate, and the carbon isotopic compositions of CO_2 and carbonate in loess strata sequences are observed and measured. In addition, 19 gas samples data of the Weinan loess section, Shaanxi Province are combination with this research to study characteristics of greenhouse gases in loess. This research indicates that (1) the free gases in loess are neither paleo-atmospheric gases nor modern atmospheric gases; (2) the concentrations of CO_2, CH_4 and N_2O in loess are higher than atmospheric level; (3) the δ~(13)C of loess CO_2 shows that the CO_2 in loess mainly comes from the oxygenolysis of organic matters, but because of isotopic exchange with carbonate in loess, the carbon isotopic exchange with carbonate in loess, the carbon isotopic compositions of loess CO_2 are much more heavier than organic original CO_2; (4) the concentration of CH_4 in Malan loess is lower because it is not favorable for the decomposition of anaerobic bacteria in the Malan Loess; (5) estimation of the total amount of the carbonate in loess reveals that loess is a huge carbon reservoir (about 850PgC). In addition, the impact of the deuterogenic carbonatization during the loess accumulation on the global carbon cycle was discussed, and the preliminary conclusion is that the research work is still not enough to evaluate the effect of loess on the sources and sinks of the anthropogenic CO_2.
Resumo:
The soil respiration and net ecosystem productivity of Kobresia littledalei meadow ecosystem was investigated at Dangxiong grassland station, one grassland field station of Lhasa Plateau Ecosystem Research Station. Soil respiration and soil heterotrophic respiration were measured at the same time by using Li6400-09 chamber in growing season of year 2004. The response of soil respiration and its components, i.e. microbial heterotrophic respiration and root respiration to biotic and abiotic factors were addressed. We studied the daily and seasonal variation on Net Ecosystem carbon Exchange (NEE) measured by eddy covariance equipments and then the regression models between the NEE and the soil temperature. Based on the researches, we analyzed the seasonal variation in grass biomass and estimated NEE combined the Net Ecosystem Productivity with heterogeneous respiration and then assessed the whether the area is carbon source or carbon sink. 1.Above-ground biomass was accumulated since the grass growth started from May; On early September the biomass reached maximum and then decreased. The aboveground net primary production (ANPP) was 150.88 g m~" in 2004. The under-ground biomass reached maximum when the aboveground start to die back. Over 80% of the grass root distributed at the soil depth from 0 to 20cm. The underground NPP was 1235.04 g m"2.. Therefore annual NPP wasl.385X103kg ha"1, i.e.6236.6 kg C ha"1. 2. The daily variation of soil respiration showed single peak curve with maximum mostly at noon and minimum 4:00-6:00 am. Daily variations were greater in June, July and August than those in September and October. Soil respiration had strong correlation with soil temperature at 5cm depth while had weaker correlation with soil moisture, air temperature, surface soil temperature, and so on. But since early September the soil respiration had a obviously correlation with soil moisture at 5cm depth. Biomass had a obviously linearity correlation with soil respiration at 30th June, 20th August, and the daytime of 27th September except at 23lh October and at nighttime of 27th September. We established the soil respiration responding to the soil temperature and to estimate the respiration variation during monsoon season (from June through August) and dry season (May, September and October). The regression between soil respiration and 5cm soil temperature were: monsoon season (June through August), Y=0.592expfl()932\ By estimating , the soil daily respiration in monsoon season is 7.798gCO2m"2 and total soil respiration is 717.44 gCC^m" , and the value of Cho is 2.54; dry season (May, September and October), Y=0.34exp°'085\ the soil daily respiration is 3.355gCO2m~2 and total soil respiration is 308.61 gCC^m", and the value of Cho is 2.34. So the total soil respiration in the grown season (From May to October) is 1026.1 g CO2IT1"2. 3. Soil heterogeneous respiration had a strong correlation with soil temperature especially with soil temperature at 5cm depth. The variation range in soil heterogeneous respiration was widely. The regression between soil heterogeneous respiration and 5cm soil temperature is: monsoon season, Y=0.106exp ' 3x; dry season, Y=0.18exp°"0833x.By estimating total soil heterotrophic respiration in monsoon season is 219.6 gCC^m"2, and the value of Cho is 3.78; While total soil heterogeneous respiration in dry season is 286.2 gCCbm"2, and the value of Cho is 2.3. The total soil heterotrophic respiration of the year is 1379.4kg C ha"1. 4. We estimated the root respiration through the balance between soil respiration and the soil heterotrophic respiration. The contribution of root respiration to total respiration was different during different period: re-greening period 48%; growing period 69%; die-back period 48%. 5. The Ecosystem respiration was relatively strong from May to October, and of which the proportion in total was 97.4%.The total respiration of Ecosystem was 369.6 g CO2 m" .we got the model of grass respiration respond to the soil temperature at 5cm depth and then estimated the daytime grass respiration, plus the nighttime NEE and daytime soil respiration. But when we estimated the grass respiration, we found the result was negative, so the estimating value in this way was not close. 6. The estimating of carbon pool or carbon sink. The NPP minus the soil heterogeneous respiration was the NEE, and it was 4857.3kg C o ha"1, which indicated that the area was the carbon sink.
Resumo:
The carbon cycle of lower trophic level in the Bohai Sea is studied with a three-dimension-al biological and physical coupled model. The influences of the processes (including horizontal advection,river nutrient load, active transport etc. ) on the phytoplankton biomass and its evolution are estimated.The Bohai Sea is a weak sink of the CO2 in the atmosphere. During the cycle, 13.7% of the gross pro-duction of the phytoplankton enter the higher trophic level and 76.8 % of it are consumed by the respira-tion itself. The nutrient reproduction comes mainly from the internal biogeochemical loop and the rem-ineralization is an important mechanism of the nutrient transfer from organic form to inorganic. Horizon-tal advection decreases the total biomass and the eutrophication in some sea areas. Change in the nutrientload of a river can only adjust the local system near its estuary. Controlling the input of the nutrient,which limits the alga growth, can be very useful in lessening the phytoplankton biomass.
Resumo:
Net organic metabolism (that is, the difference between primary production and respiration of organic matter) in the coastal ocean may be a significant term in the oceanic carbon budget. Historical change in the rate of this net metabolism determines the importance of the coastal ocean relative to anthropogenic perturbations of the global carbon cycle. Consideration of long-term rates of river loading of organic carbon, organic burial, chemical reactivity of land-derived organic matter, and rates of community metabolism in the coastal zone leads us to estimate that the coastal zone oxidizes about 7 × 1012 moles C/yr. The open ocean is apparently also a site of net organic oxidation (∼16 × 1012 moles C/yr). Thus organic metabolism in the ocean appears to be a source of CO2 release to the atmosphere rather than being a sink for atmospheric carbon dioxide. The small area of the coastal ocean accounts for about 30% of the net oceanic oxidation. Oxidation in the coastal zone (especially in bays and estuaries) takes on particular importance, because the input rate is likely to have been altered substantially by human activities on land.
Resumo:
This study investigates the distribution of black carbon (BC) and its correlation with total polycyclic aromatic hydrocarbons (I PAH) pound in the surface sediments of China's marginal seas. BC content ranges from < 0.10 to 2.45 mg/g dw (grams dry weight) in the sediments studied, and varied among the different coastal regions. The Bohai Bay sediments had the highest BC contents (average 2.18 mg/g dw), which comprises a significant fraction (27%-41%) of the total organic carbon (TOC) preserved in the sediments. In comparison, BC in the surface sediments of the North Yellow Sea, Jiaozhou Bay, East China Sea and the South China Sea is less abundant and accounted for an average of 6%, 8%, 14% and 5%, respectively, of the sedimentary organic carbon pool. The concentration of I PAH pound in the surface sediments ranges from 41 to 3 667 ng/g dw and showed large spatial variations among the sampling sites of different costal regions. The Bohai Bay has the highest I PAH pound values, ranging from 79 to 3 667 ng/g dw. This reflects the high anthropogenically contaminated nature of the sediments in the bay. BC is positively correlated to TOC but a strong correlation is not found between BC and I PAH pound in the surface sediments studied, suggesting that BC and PAHs preserved in the sediments are derived from different sources and controlled by different biogeochemical processes. Our study suggests that the abundance of BC preserved in the sediments could represent a significant sink pool of carbon cycling in China's marginal seas.
Resumo:
Research related to carbon geochemistry and biogeochemistry in the East China Sea is reviewed in this paper. The East China Sea is an annual net sink for atmospheric CO, and a large net source of dissolved inorganic carbon to the ocean. The sea absorbs CO, from the atmosphere in spring and summer and releases it in autumn and winter. The East China Sea is a CO, sink in summer because Changjiang River freshwater flows into it. The net average sea-air interface carbon flux of the East China Sea is estimated to be about 4.3 X 10(6) t/y. Vertical carbon transport is mainly in the form of particulate organic carbon in spring; more than 98% of total carbon is transported in this form in surface water, and the number exceeds 68% in water near the bottom. In the southern East China Sea, the average particulate organic carbon inventory was about one-tenth that of the dissolved organic carbon. Research indicates that the southern Okinawa Trough is an important site for particulate organic carbon export from the shelf. The annual cross-shelf exports are estimated to be 414 and 106 Gmol/y for dissolved organic carbon and particulate organic carbon, respectively. Near-bottom transport could be the key process for shelf-to-deep sea export of biogenic and lithogenic particles.