44 resultados para Carbon sequestration - Pasture - Grazing management

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrogen deposition experiments were carried out in alpine meadow ecosystems in Qinghai-Xizang Plateau in China, in order to explore the contribution of nitrogen deposition to carbon sequestration in alpine meadows. Two methods were used in this respect. First, we used the allocation of N-15 tracer to soil and plant pools. Second, we used increased root biomass observed in the nitrogen-amended plots. Calculating enhanced carbon storage, we considered the net soil CO2 emissions exposed to nitrogen deposition in alpine meadows. Our results show that nitrogen deposition can enhance the net soil CO2 emissions, and thus offset part of carbon uptake by vegetation and soils. It means that we have to be cautious to draw a conclusion when we estimate the contribution of nitrogen deposition to carbon sequestration based on the partitioning of N-15 tracer in terrestrial ecosystems, in particular in N-limited ecosystems. Even if we assess the contribution of nitrogen deposition to carbon sequestration based on increased biomass exposed to nitrogen deposition in terrestrial ecosystems, likewise, we have to consider the effects of nitrogen deposition on the soil CO2 emissions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated experimental warming and simulated grazing ( clipping) effects on rangeland quality, as indicated by vegetation production and nutritive quality, in winter-grazed meadows and summer- grazed shrublands on the Tibetan Plateau, a rangeland system experiencing climatic and pastoral land use changes. Warming decreased total aboveground net primary productivity ( ANPP) by 40 g . m(-2) . yr(-1) at the meadow habitats and decreased palatable ANPP ( total ANPP minus non- palatable forb ANPP) by 10 g . m(-2) . yr(-1) at both habitats. The decreased production of the medicinal forb Gentiana straminea and the increased production of the non- palatable forb Stellera chamaejasme with warming also reduced rangeland quality. At the shrubland habitats, warming resulted in less digestible shrubs, whose foliage contains 25% digestible dry matter ( DDM), replacing more digestible graminoids, whose foliage contains 60% DDM. This shift from graminoids to shrubs not only results in lower- quality forage, but could also have important consequences for future domestic herd composition. Although warming extended the growing season in non- clipped plots, the reduced rangeland quality due to decreased vegetative production and nutritive quality will likely overwhelm the improved rangeland quality associated with an extended growing season.Grazing maintained or improved rangeland quality by increasing total ANPP by 20 - 40 g . m(-2) . yr(-1) with no effect on palatable ANPP. Grazing effects on forage nutritive quality, as measured by foliar nitrogen and carbon content and by shifts in plant group ANPP, resulted in improved forage quality. Grazing extended the growing season at both habitats, and it advanced the growing season at the meadows. Synergistic interactions between warming and grazing were present, such that grazing mediated the warming- induced declines in vegetation production and nutritive quality. Moreover, combined treatment effects were nonadditive, suggesting that we cannot predict the combined effect of global changes and human activities from single- factor studies.Our findings suggest that the rangelands on the Tibetan Plateau, and the pastoralists who depend on them, may be vulnerable to future climate changes. Grazing can mitigate the negative warming effects on rangeland quality. For example, grazing management may be an important tool to keep warming- induced shrub expansion in check. Moreover, flexible and opportunistic grazing management will be required in a warmer future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used the eddy covariance method to measure the M exchange between the atmosphere and an alpine meadow ecosystem (37degrees29-45'N, 101degrees12-23'E, 3250m a.s.l.) on the Qinghai-Tibetan Plateau, China in the 2001 and 2002 growing seasons. The maximum rates Of CO2 uptake and release derived from the diurnal course Of CO2 flux (FCO2) were -10.8 and 4.4 mumol m(-2) s(-1), respectively, indicating a relatively high net carbon sequestration potential as compared to subalpine coniferous forest at similar elevation and latitude. The largest daily CO2 uptake was 3.9 g cm(-2) per day on 7 July 2002, which is less than half of those reported for lowland grassland and forest at similar latitudes. The daily CO2 uptake during the measurement period indicated that the alpine ecosystem might behave as a sink of atmospheric M during the growing season if the carbon lost due to grazing is not significant. The daytime CO2 uptake was linearly correlated with the daily photosynthetic photon flux density each month. The nighttime averaged F-CO2 showed a positive exponential correlation with the soil temperature, but apparently negative correlation with the soil water content. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proposed plan for enrichment of the Sulu Sea, Philippines, a region of rich marine biodiversity, with thousands of tonnes of urea in order to stimulate algal blooms and sequester carbon is flawed for multiple reasons. Urea is preferentially used as a nitrogen source by some cyanobacteria and dinoflagellates, many of which are neutrally or positively buoyant. Biological pumps to the deep sea are classically leaky, and the inefficient burial of new biomass makes the estimation of a net loss of carbon from the atmosphere questionable at best. The potential for growth of toxic dinoflagellates is also high, as many grow well on urea and some even increase their toxicity when grown on urea. Many toxic dinoflagellates form cysts which can settle to the sediment and germinate in subsequent years, forming new blooms even without further fertilization. If large-scale blooms do occur, it is likely that they will contribute to hypoxia in the bottom waters upon decomposition. Lastly, urea production requires fossil fuel usage, further limiting the potential for net carbon sequestration. The environmental and economic impacts are potentially great and need to be rigorously assessed. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated how the high small-scale species richness of an alpine meadow on the Qinghai-Tibet Plateau, China, is maintained. This area is characterized by strong wind and severe cold during long winters. In winter, most livestock is grazed on dead leaves in small pastures near farmers' residences, whereas in the short summer, livestock is grazed in mountainous areas far from farmers' residences. The number of plant species and the aboveground biomass were surveyed for three adjacent pastures differing in grazing management: a late-winter grazing pasture grazed moderately from 1 February to 30 April, an early-winter grazing pasture grazed lightly from 20 September to late October, and a whole-year grazing pasture grazed intensively throughout the entire year. In each pasture, we harvested the aboveground biomass from 80 or 100 quadrats of 0.01 m(2) along a transect and classified the contents by species. We observed 15.5-19.7 species per 0.01 m(2), which is high richness per 0.01 m(2) on a worldwide scale. The species richness in the two winter grazing pastures was higher than that in the whole-year grazing pasture. The spatial variation in species richness and species composition in the two winter grazing pastures in which species richness was high was greater than that in the whole-year grazing pasture in which species richness was lower. Most of the leaves that are preserved on the winter grazing pastures during summer are blown away by strong winds during winter, and the remaining leaves are completely exhausted in winter by livestock grazing. A pasture with a high richess is accompanied by a high spatial variation in species richness and species composition. There is a high possibility that the characteristic of spatial variation is also caused by traditional grazing practices in this area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Plateau pikas Ochotona curzoniae are considered a pest species on the Tibetan Plateau because they compete with livestock for forage and their burrowing could contribute to soil erosion. The effectiveness of pest control programmes in Tibet has not been measured, and it is not known whether changes in livestock management have exacerbated problems with plateau pikas or compromised their control. This study measured the impact of control programmes and livestock management for forage conservation on populations of plateau pikas in alpine meadow in Naqu District, central Tibet, during 2004 and 2005.2. Current techniques for controlling plateau pikas in spring cause large reductions in abundance, but high density-dependent rates of increase result in no differences between treated and untreated populations by the following autumn. Rates of increase from spring to autumn are not influenced by standing plant biomass or concurrent grazing by yaks Bos grunniens and Tibetan sheep Ovis aries.3. In autumn there was significantly lower biomass outside fenced areas with year-round livestock grazing compared with inside fenced areas with equivalent or higher numbers of plateau pikas but predominantly winter grazing by livestock. Inside fenced areas, control of plateau pikas in spring produced no detectable effect on standing plant biomass at the end of the following summer compared with uncontrolled populations of plateau pikas.4. Regardless of their initial density, populations of plateau pikas declined rapidly over winter outside fenced areas where there was very low standing plant biomass in autumn. However, inside fenced areas with higher plant biomass in autumn, low-density populations of plateau pikas declined more slowly than high-density populations.5. Synthesis and applications. Current control programmes have limited effect because populations of plateau pikas can recover in one breeding season. There was no apparent increase in forage production in areas where plateau pikas were controlled. However, plateau pikas appear to benefit from changes in grazing management, with low-density populations declining less over winter inside fenced areas than elsewhere. It was not evident that control programmes are warranted or that they will improve the livelihoods of Tibetan herders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

土地利用变化,尤其是热带地区森林生态系统土地利用方式的变化极大地改变了全球碳循环,对大气CO2浓度的升高,气候变暖等全球性环境问题起着不可忽视的作用。同时,森林的大面积破坏,引起土壤流失,营养元素含量降低,土壤健康状况恶化,最终大幅度降低生态系统的生产力。本文主要结合野外实地调查和室内分析的方法,研究森林砍伐后转变为农田和橡胶园对西双版纳热带地区土壤碳、氮、磷含量以及有机质化学结构的影响,天然次生林恢复、橡胶园建设对大气CO2的蓄积作用。 森林砍伐后转变为农田和橡胶园,显著地改变了土壤的理化特性。研究结果表明,与次生林相比,农田和橡胶园表层土壤容重、pH值升高,含水量降低,有机质、全氮、全磷、速效氮、有效磷含量显著降低。土地利用变化对土壤特性的影响主要发生在0-40 cm 表层土壤,而对40 cm以下土层影响较小。 土地利用变化改变土壤碳含量,同时影响土壤有机质的化学结构。胡敏酸紫外-可见光谱(UV-VIS)、傅利叶变换红外光谱 (FT-IR) 分析发现,不同生态系统表层土壤 (0-20 cm) 胡敏酸光谱学特性存在明显差异。次生林E4/E6值高于农田和橡胶园。与次生林相比,农田和橡胶园表层土壤有机质中酚基相对含量显著降低,脂肪族、芳香族、羧基以及多聚糖等化合物相对含量增加。 运用样地调查、生物量模型模拟和室内土壤样品分析方法,研究了次生林恢复和橡胶园建设对大气CO2的汇集作用。结果表明:退化土壤恢复为次生林、农田建设橡胶园能够有效促进植被和土壤中碳的汇集。次生林和橡胶林生物量增长速率分别为9.8,10.2 (9.4)t•ha-1•yr-1, 1 m表层土壤有机碳汇集速率分别为0.7和1.1 t•C•ha-1•yr-1。模拟结果显示,40年橡胶林生物量为327 (324) t•ha-1, 恢复50年后天然次生林生物量为395 t•ha-1。加之土壤有机碳,40年橡胶园约汇集碳190 t•ha-1, 次生林恢复50年碳汇集潜力为250 t•ha-1。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three years of eddy covariance measurements were used to characterize the seasonal and interannual variability of the CO2 fluxes above an alpine meadow (3250 m a.s.l.) on the Qinghai-Tibetan Plateau, China. This alpine meadow was a weak sink for atmospheric CO2, with a net ecosystem production (NEP) of 78.5, 91.7, and 192.5 g C m(-2) yr(-1) in 2002, 2003, and 2004, respectively. The prominent, high NEP in 2004 resulted from the combination of high gross primary production (GPP) and low ecosystem respiration (R-e) during the growing season. The period of net absorption of CO2 in 2004, 179 days, was 10 days longer than that in 2002 and 5 days longer than that in 2003. Moreover, the date on which the mean air temperature first exceeded 5.0 degrees C was 10 days earlier in 2004 (DOY110) than in 2002 or 2003. This date agrees well with that on which the green aboveground biomass (Green AGB) started to increase. The relationship between light-use efficiency and Green AGB was similar among the three years. In 2002, however, earlier senescence possibly caused low autumn GPP, and thus the annual NEP, to be lower. The low summertime R-e in 2004 was apparently caused by lower soil temperatures and the relatively lower temperature dependence of R-e in comparison with the other years. These results suggest that (1) the Qinghai-Tibetan Plateau plays a potentially significant role in global carbon sequestration, because alpine meadow covers about one-third of this vast plateau, and (2) the annual NEP in the alpine meadow was comprehensively controlled by the temperature environment, including its effect on biomass growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper selected the Taklamakan Desert and the Badain Jaran Desert as the research areas, tested the carbonate content of surface-sand samples of dunes using Eijkelkamp carbonate goniophotometer, and analyzed the spatial-distribution characteristics of carbonate and estimated the carbonate-stock and secondary carbonate-stock in 1m depth of surface sand in the Taklamakan Desert and the Badain Jaran Desert. In addition, the paper test XRD, SEM, TDA, stable carbon isotope and radioactive strontium isotope of lacustrine deposits in the Taklamakan Desert and carbonates, such as kunkar, root canal, lacustrine deposits, sinter and calcrete, in the Badain Jaran Desert. Resting on the achievements by our predecessors, it analyzed the mineral-composition differences of the carbonates, calculated the contents of secondary carbonate and, furthermore, evaluated their potential of sequestration of CO2 in the atmosphere. The overall goal of this study was to increase our understanding of soil carbonate in the context of carbon sequestration in the arid region in China. That is, to advance our understanding about whether or not secondary carbonate in desert is a sink for atmospheric CO2. The following viewpoints were obtained: 1 Carbonate contents of surface-sand samples decend from the south to the north of the Taklamakan Desert. The minimum lies in the south and the maxmum in the mid. Carbonate content of surface-sand of megadunes in the Badain Jaran Desert has low value generally in the dune-crest and the base of slope, and large value in the mid. The average of Carbonate contents of all sorts of collected samples in the same area of the Taklamakan Desert has small diffetences. The average is about 9%. 2 Using carbonate contents as key parameters, calculate the carbon-stock of carbonates in 1m depth of surface sand in the Taklamakan Desert and the Badain Jaran Deser.They are 1.13Pg and 0.19 Pg respectively. There are 0.53Pg and 0.088Pg carbon-stock of secondary-carbonates in 1m depth of surface sand in the Taklamakan Desert and the Badain Jaran Desert. 3 Through testing data from XRD (X-ray diffraction)and TAD ( Thermal Analysis Data), the most significant conclusion derived from is that the main mineral ingredient is calcite in different carbonate substances in arid regions, From the SEM(Scanning electron microscopy ) images, can obtains the information about the micro environment of different carbonate forms in which they can grow. 4 Selected gas by termal cracking and traditional phosphoric acid method, their δ13C show that δ13C is a good parameter to indicate the micro environment in which different secondary carbonate forms. From the δ13C of the same type samples, if the redeposit degree is hard, theδ13C is light, the redeposit degree is weak, the δ13C is heave. and the δ13C of the different type samples, δ13C is mainly controlled by the micro environment in which secondary formed. if the procedure is characterized by redeposit and dissolve of marine facies carbonate, δ13C is heavy, it is characterized by CO2 which produced by plant respiration,δ13C is light. 5 From the δ13C of lacustrine deposit in the different grain size, there exsit certain differences in their micro environment and secondary degree among different grain size in the same grade. 6 The secondary carbonate content of lacustrine deposits in Taklimakan Desert is 47.26%. And those of root canal, sinter, calcrete, kunkar, lacustrine deposit and surface sand in Badain Jaran Desert are 91.74%, 78.46%, 76.26%, 87.87%, 85.37%and 46.49%, respectively. Of different grain size samples, the secondary carbonate contents of coarse fraction (20-63μm), sub-coarse fraction (5-20μm) and fine fraction (<5μm) are 80.10%, 47.2%and 50.07%, respectively. 7 There is no obvious relevance betweenδ13C of secondary carbonate and the content of secondary carbonate,theδ13C of secondary carbonate mainly reflects the parameters of secondary process, the content of secondary carbonate reflects difference of secondary degree.. 8 Silicates potentially supply 3.4 pencent calcium source during forming process of lacustrine deposits in Taklimakan Desert. If calcium source is mainly supplied by goundwater, it can be calculated that about 5.18 %, 6.13%, 5.68%, 5.64 % and 6.82% silicates supply calcium source respectively for root canal, kunkar, lacustrine deposit, calcrete and sinter, during the forming process of different kinds of carbonates in Badain Jaran Desert.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Using heterogeneous vegetation in alpine grassland through grazing is a necessary component of deintensification of livestock systems and conservation of natural environments. However, better understanding of the dynamics of animal feeding behaviour would improve pasture and livestock grazing managements, particularly in the early part of the spring season when forage is scarce. The changes in behaviour may improve the use of poor pastures. Then, enhancing management practices may conserve pasture and improve animal productivity. Grazing behaviour over 24 In periods by yaks in different physiological states (lactating, dry and replacement heifers) was recorded in the early, dry and later, germinating period of the spring season. Under conditions of inadequate forage, the physiological state of yaks was not the primary factor affecting their grazing and ruminating behaviour. Forage and sward state affected yaks' grazing and ruminating behaviour to a greater extent. Generally, yaks had higher intake and spent more time grazing and ruminating during the later part of the spring season, following germination of forage, than during the earlier dry part of the season. However, the live weight of yaks was less during pasture germination than during the early dry part of the season because the herbage mass is low, and the yaks have to expend much energy to seek feed at this particular time. (c) 2007 Elsevier B.V. All rights reserved.