22 resultados para Carbon nanofibers, CNF

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Palladium nanoparticle-loaded carbon nanofibers (Pd/CNFs) were prepared by electrospinning and subsequent thermal treatment processes. Pd/CNFs modified carbon paste electrode (Pd/CNF-CPE) displayed excellent electrochemical catalytic activities towards dopamine (DA), uric acid (UA) and ascorbic acid (AA). The oxidation overpotentials of DA, UA and AA were decreased significantly compared with those obtained at the bare CPE. Differential pulse voltammetry was used for the simultaneous determination of DA, UA and AA in their ternary mixture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel carbon-nanofiber-modified carbon-paste electrode (CNF-CPE) was employed for the simultaneous determination of dopamine (DA), ascorbic acid (AA) and uric acid (UA) with good selectivity and high sensitivity. The CNFs were prepared by combination of electrospinning technique with thermal treatment method and were used without any pretreatment. In application to determination of DA, AA and UA in the ternary mixture, the pristine CNF-CPE exhibited well-separated differential pulse voltammetric peaks with high catalytic current. Low detection limits of 0.04 mu M, 2 mu M and 0.2 mu M for DA, AA and UA were obtained, with the linear calibration curves over the concentration range 0.04-5.6 mu M, 2-64 mu M and 0.8-16.8 mu M, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highly sensitive amperometric detection of dihydronicotinamide adenine dinucleotide (NADH) by using novel synthesized carbon nanofibers (CNFs) without addition of any mediator has been proposed. The CNFs were prepared by combination of electrospinning technique with thermal treatment method and were applied without any oxidation pretreatment to construct the electrochemical sensor. In amperometric detection of NADH, a linear range up to 11.45 mu M with a low detection limit of 20 nM was obtained with the CNF-modified carbon paste electrode (CNF-CPE).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we developed an electrochemical method for the detection of hydrazine based oil palladium nanoparticle/carbon nanofibers (Pd/CNFs). Pd/CNFs were prepared by electrospinning technique and subsequent thermal treatments. The electrocatalytic behaviors of Pd/CNFs modified glassy carbon electrode (Pd/CNF-GCE) for hydrazine oxidation were evaluated by cyclic voltammetry (CV), an obvious and well-defined oxidation peak appeared at -0.32 V (vs. Ag/AgCl). The mechanism of the oxidation of hydrazine at Pd/CNF-GCE was also studied, which demonstrated an irreversible diffusion-controlled electrode process and a four-electron transfer involved in the overall reaction. Furthermore, the wide linear range, low detection limit, good reproducibility and excellent storage stability were obtained utilizing differential pulse voltammetry (DPV).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Palladium nanoparticle-loaded carbon nanofibers (Pd/CNFs) were synthesized by the combination of electrospinning and thermal treatment processes. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images show that spherical Pd nanoparticles (NPs) are well-dispersed on the surfaces of CNFs or embedded in CNFs. X-ray diffraction (XRD) pattern indicates that cubic phase of Pd was formed during the reduction and carbonization processes, and the presence of Pd NPs promoted the graphitization of CNFs. This nanocomposite material exhibited high electric conductivity and accelerated the electron transfer, as verified by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A procedure for purifying single-walled carbon nanotubes (SWNTs) synthesized by the catalytic decomposition of hydrocarbons has been developed. Based on the results from SEM observations, EDS analysis and Raman measurements, it was found that amorphous carbon, catalyst particles, vapor-grown carbon nanofibers and multi-walled carbon nanotubes were removed from the ropes of SWNTs without damaging the SWNT bundles, and a 40% yield of the SWNTs with a purity of about 95% was achieved after purification. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hollow carbon nanofibers with circular and rectangular opening were prepared by using electrospun silica fibers as templates. Silica fibers were synthesized by electrospinning, and they were coated with a carbon layer formed by thermal decomposition and carbonization of polystyrene under a nitrogen atmosphere. Hollow carbon nanofibers with circular and rectangular openings were then obtained after the silica core was etched by hydrofluoric acid. The carbon nanofibers with different morphologies also could be used as templates to fabricate silicon carbide fibers. The silicon carbide fibers with circular and rectangular openings could be obtained by using hollow carbon nanofibers and carbon belts as templates, respectively.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A novel nonenzymatic glucose sensor was developed based on the renewable Ni nanoparticle-loaded carbon nanofiber paste (NiCFP) electrode. The NiCF nanocomposite was prepared by combination of electrospinning technique with thermal treatment method. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images showed that large amounts of spherical nanoparticles were well dispersed on the surface or embedded in the carbon nanofibers. And the nanoparticles were composed of Ni and NiO, as revealed by energy dispersive X-ray spectroscopy (EDX) and X-ray powder diffraction (XRD). In application to nonenzymatic glucose determination, the renewable NiCFP electrodes, which were constructed by simply mixing the electrospun nanocomposite with mineral oil, exhibited strong and fast amperometric response without being poisoned by chloride ions. Low detection limit of 1 mu M with wide linear range from 2 mu M to 2.5 mM (R = 0.9997) could be obtained.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Composite fibers composed of poly(L-lactide)-grafted hydroxyapatite (PLA-g-HAP) nanoparticles and polylactide (PLA) matrix were prepared by electro-spinning. Environmental scanning electron microscope (ESEM) and transmission electron microscopy (TEM) were employed to investigate the morphology of the composite fibers and the distribution of PLA-g-HAP nanoparticles in the fibers, respectively. At a low content (similar to 4 wt%) of PLA-g-HAP, the nanoparticles dispersed uniformly in the fibers and the composite fibrous mats exhibited higher strength properties, compared with the pristine PLA fiber mats and the simple hydroxyapatite/PLA blend fiber mats. But when the content of PLA-g-HAP further increased, the nanoparticles began to aggregate, which resulted in the deterioration of the mechanical properties of the composite fiber mats. The degradation behaviors of the composite fiber mats were closely related to the content of PLA-g-HAP. At a low PLA-g-HAP content, degradation may be delayed due to the reduction of autocatalytic degradation of PLA. When PLA-g-HAP content was high, degradation rate increased because of the enhanced wettability of the composite fibers and the escape of the nanoparticles from fiber surfaces during incubation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One-dimensional YVO4:Ln and Y(V, P)O-4:Ln nanofibers and quasi-one-dimensional YVO4:Ln microbelts (Ln = Eu3+, Sm3+, Dy3+) have been prepared by a combination method of sol-gel process and electrospinning. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL), low-voltage cathodoluminescence (CL), and time-resolved emission spectra as well as kinetic decays were used to characterize the resulting samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A catalyst of Rh nanoparticles supported on a carbon nanofiber, 5 wt.% Rh/CNF, with an average size of 2-3 nm has been prepared by a method of incipient wetness impregnation. The catalyst presented a high activity in the ring hydrogenation of phenol in a medium of supercritical CO2 (scCO(2)) at a low temperature of 323 K. The presence of compressed CO2 retards hydrogenation of cyclohexanone to cyclohexanol under the reaction conditions used, and this is beneficial for the formation of cyclohexanone, increasing the selectivity to cyclohexanone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrospun carbon nanofiber-supported bimetallic PtxAu100-x electrocatalysts (PtxAu100-x/CNF) were prepared by electrochemical codeposition method. The composition of PtAu bimetallic nanoparticles could be controlled by varying the ratio of H2PtCl6 and HAuCl4. Scanning electron microscopy images showed that bimetallic nanoparticles had coarse surface morphology with high electrochemically active surface areas. X-ray diffraction analysis testified the formation of PtAu alloys. PtxAu100-x/CNF electrocatalysts exhibited improved electrocatalytic activities towards formic acid oxidation by providing the selectivity of the reaction via dehydrogenation pathway and suppressing the formation/adsorption of poisoning CO intermediate, indicating that PtxAu100-x/CNF is promising electrocatalyst in direct formic acid fuel cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sulfonated poly[bis(benzimidazobenzisoquinolinones)] (SPBIBI) possessing a conjugated pyridinone ring was shown to be effective for dispersing multiwalled carbon nanotubes (MWCNTs) in DMSO. The dispersions in which the SPBIBI to MWCNTs mass ratio was 4:1 demonstrated the highest MWCNTs concentrations, i.e., 1.5-2.0 mg mL(-1), and were found to be stable for more than six months at room temperature. Through casting of these dispersions, MWCNTs/SPBIBI composite membranes were successfully fabricated on substrates as proton exchange membranes for fuel cell applications and showed no signs of macroscopic aggregation. The properties of composite membranes were investigated, and it was found that the homogeneous dispersion of the MWCNTs in the SPBIBI matrix altered the morphology structures of the composite membranes, which lead to the formation of more regular and smaller cluster-like ion domains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Luminescent, mesoporous, and bioactive europium-doped hydroxyapatite (HAp:Eu3+) nanofibers and microbelts have been prepared by a combination of sol-gel and electrospinning processes with a cationic surfactant as template. The obtained multifunctional hydroxyapatite nanofibers and microbelts, which have mesoporous structure and red luminescence, were tested as drug carriers by investigating their drug-storage/release properties with ibuprofen (IBU) as model drug. X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution (HR) TEM, FTIR spectroscopy, N-2 adsorption/desorption, photoluminescence (PL) spectra, and UV/Vis spectroscopy were used to characterize the structural, morphological, textural, and optical properties of the resulting samples.