44 resultados para Carbon density

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

作者广泛收集了近二十年来我国森林生物量生产力、土壤剖面有机质含量、凋落物现存量、年凋落量、凋落物分解等方面的研究资料,以及国内外土壤呼吸的相关资料,把森林作为一个自然的生态系统,从生物自身循环的角度系统地研究了我国森林在全球变化中的地位和作用提供了基础数据。主要得到以下几个方面的研究结果: 1、基于上述资料,采用林业部规划院1989-1993年的最新统计的我国不同森林类型的面积(不包括经济林和竹林,台湾省未计入),估算了我国森林生态系统总碳贮量。森林生态系统有机碳库包括植被、土壤和凋落物层三个分室,我国主要森林生态系统的碳贮量为281.16 * 10~8吨,其中植被碳库为62.00 * 10~8吨,占总碳库的22.2%;土壤碳库为210.23 * 10~8吨,占总碳库的74.6%;凋落物层的碳贮量为8.92 * 10~8吨,占总量的3.2%。我国森林生态系统碳贮量由大到小的顺序是:落叶阔叶林、暖性针叶林、常绿和常绿落叶阔叶林、云冷杉林、落叶松林、硬叶常绿阔叶林、温性针叶林、针叶和针阔混交林、阔叶红松林、热带林、樟子松林,前5类森林碳贮量占总贮量的87%,是我国森林主要的碳库。 2、分析了我国森林生态系统各个分室的碳密度特点。我国森林生态系统的平均碳密度是258.83t/ha,基本趋势是随纬度的增加而增加。其中植被的平均碳密度是57.07t/ha,随纬度的增加而减小;土壤碳密度约是植被碳密度3.4倍,其区域特点与植被碳密度呈相反趋势,随纬度升高而增加,作者根据所选117个样本建立了土壤有机碳密度与水热因子的模拟方程;凋落物层平均碳密度是8.21t/ha,随水热因子的改善而减小。这些结果为研制森林生态系统仿真模型提供了基础。 3、分析了我国森林生态系统的主要碳平衡通量,对中国森林生态系统的碳源与碳汇作初步评价,为减缓我国二氧化碳排放提供理论基础。结果表明我国森林生态系统在与大气的气体交换中表现为碳汇,年通量为4.80 * 10~8吨C/年。基本规律是随纬度的升高,即从热带向寒带,碳汇功能下降,这取决于系统碳收支的各个通量之间的动态平衡;阔叶林的固碳能力大于针叶林。 4、初步评价了我国森林生态系统在碳循环中的作用。我国生物物质燃烧、化石燃料燃烧、人口呼吸每所释放的总碳量为9.87 * 10~8吨/年,而我国森林生态系统可以吸收其中的48.7%。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

本研究以长白山地区原始和次生的阔叶红松林为对象,在2007和2008年共建立了8种类型10块1 ha样地。通过野外调查和取样分析,得到各样地森林生态系统的植物、枯死物和土壤碳密度值,并结合采伐样地经营历史情况(采伐时间和强度),得到长白山地区原始阔叶红松林生态系统碳密度参考值和次生阔叶红松林生态系统碳密度对采伐强度和植被恢复时间的响应特征。在此基础上,通过建立阔叶红松林乔木碳密度与生态系统碳密度的回归关系,并结合露水河林业局3个时期(1987、1995和2003年)的小班数据和原始林碳密度参考值,估算露水河林业局林业用地3个时期和潜在的碳储量。主要研究结果如下: (1)原始阔叶红松林生态系统碳密度参考值:植被、枯死物、土壤和生态系统碳密度值分别为149.18±54.57、20.93±14.33、156.39±14.99、326.50±34.52 t•ha-1。其中下木层、乔木层碳密度分别是1.55±0.74,147.63±54.39 t•ha-1;粗木质残体和枯枝落叶碳密度分别是15.64±13.66、5.29±1.72 t•ha-1;0-50 cm的各层土壤碳密度分别为62.14±6.31、46.17±10.25、27.82±6.20、12.57±4.67、7.69±2.20 t•ha-1。 (2)原始阔叶红松林生态系统碳密度对采伐干扰的响应特征为:采伐干扰均会减少生态系统碳密度;其中植被碳库对采伐干扰最为敏感且碳密度值均减少,采伐强度直接决定植被碳密度的减少程度和恢复时间;枯死物碳库对采伐干扰最不敏感且碳密度值是先增加后减少,采伐强度和植被恢复时建群树种决定枯死物碳密度的变化程度;土壤碳库对高强度采伐干扰敏感,采伐强度决定土壤碳密度是否发生变化。 (3)估算露水河林业局林业用地在1987、1995、2003年和潜在的森林生态系统碳储量分别为29.58×106 t、27.55×106 t、30.46×106 t和38.75×106 t。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Terrestrial carbon pool mainly consists of three parts: the active carbon pool of the vegetation,soil carbon pools and the lithosphere carbon pool of less activity. Under natural conditions,vegetation carbon pools,soil carbon exchange with atmospheric carbon pool directly,the lithosphere participate in the global carbon cycle by weathering Our research have coverd the soil organic carbon density,plant biomass (carbon density),plant net primary productivity of past 40 ka,and the magnetic susceptibility,grain size,weathering of silicate carbon consumption of past 140 ka. This study has achieved a number of conclusions as shown below. 1 Silicate weathering CO2 consumption in the long-term fluctuations with a similar deep-sea δ18O record,demonstate that it not only can be used as one of the instructions of terrestrial carbon pool,even can be used as indicators of global environmental change; silicate weathering CO2 consumption and susceptibility shown a clear relationship between lag or lead at different times,it maybe lies on how the climate change. 2 Soil carbon pools in line with the global climate on long-term,but the relationship between soil carbon density and climate change was not obvious in short-term change,generally lags behind the changes in other climatic proxies. 3 Carbon density of vegetation and other proxy indicators of climate have good consistency. In the study period,perform the cycle of glacial and interglacial completely,but because of the ancient vegetation of accurate information is difficult to obtain,it did not reflect rapid response to climate change. 4 Cooling events is conducive to soil organic carbon accumulation but not conducive to weathering and vegetation growth. High temperature environment is not conducive to the accumulation of soil organic carbon. 5 In the deglacial time from the last glacial maximum to the Holocene,weathering carbon consumption seems earlier than vegetation and soil organic carbon in the fluctuant increase.Does it imply that the effects of silicate weathering is an important factor to the global carbon cycle and global climate change? It is worth further research.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Under optimized operating parameters, a hard and wear resistant ( Ti,Al)N film is prepared on a normalized T8 carbon tool steel substrate by using pulsed high energy density plasma technique. Microstructure and composition of the film are analysed by x-ray diffraction, x-ray photoelectron spectroscopy, Auger electron spectroscopy and scanning electron microscopy. Hardness profile and tribological properties of the film are tested with nano-indenter and ring-on-ring wear tester, respectively. The tested results show that the microstructure of the film is dense and uniform and is mainly composed of ( Ti,Al)N and AlN hard phases. A wide transition interface exists between the film and the normalized T8 carbon tool steel substrate. Thickness of the film is about 1000 nm and mean hardness value of the film is about 26GPa. Under dry sliding wear test conditions, relative wear resistance of the ( Ti,Al)N film is approximately 9 times higher than that of the hardened T8 carbon tool steel reference sample. Meanwhile, the ( Ti,Al)N film has low and stable friction coefficient compared with the hardened T8 carbon tool steel reference sample.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we report the applicability of the density matrix renormalization group (DMRG) approach to the cylindrical single wall carbon nanotube (SWCN) for the purpose of its correlation effect. By applying the DMRG approach to the t+U+V model, with t and V being the hopping and Coulomb energies between the nearest neighboring sites, respectively, and U the on-site Coulomb energy, we calculate the phase diagram for the SWCN with chiral numbers (n(1)=3, n(2)=2), which reflects the competition between the correlation energy U and V. Within reasonable parameter ranges, we investigate possible correlated ground states, the lowest excitations, and the corresponding correlation functions in which the connection with the excitonic insulator is particularly addressed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The perturbed-chain statistical associating fluid theory and density-gradient theory are used to construct an equation of state (EOS) applicable for the phase behaviors of carbon dioxide aqueous solutions. With the molecular parameters and influence parameters respectively regressed from bulk properties and surface tensions of pure fluids as input, both the bulk and interfacial properties of carbon dioxide aqueous solutions are satisfactorily correlated by adjusting the binary interaction parameter (k(ij)). Our results show that the constructed EOS is able to describe the interfacial properties of carbon dioxide aqueous solutions in a wide temperature range, and illustrate the influences of temperature, pressure, and densities in each phase on the interfacial properties.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Molybdenum phosphide (MoP) and supported molybdenum phosphide (MoP/gamma-Al2O3) have been prepared by the temperature-programmed reduction method. The surface sites of the MoP/gamma-Al2O3 catalyst were characterized by carbon monoxide (CO) adsorption with in situ Fourier transform infrared (FT-IR) spectroscopy. A characteristic IR band at 2037 cm(-1) was observed on the MoP/gamma-Al2O3 that was reduced at 973 K. This band is attributed to linearly adsorbed CO on Mo atoms of the MoP surface and is similar to IR bands at 2040-2060 cm(-1), which correspond to CO that has been adsorbed on some noble metals, such as platinum, palladium, and rhodium. Density functional calculations of the structure of molybdenum phosphides, as well as CO chemisorption on the MoP(001) surface, have also been studied on periodic surface models, using the generalized gradient approximation (GGA) for the exchange-correlation functional. The results show that the chemisorption of CO on MoP occurred mainly on top of molybdenum, because the bonding of CO requires a localized mininum potential energy. The adsorption energy obtained is DeltaH(ads) approximate to -2.18 eV, and the vibrational frequency of CO is 2047 cm-1, which is in good agreement with the IR result of CO chernisorption on MoP/gamma-Al2O3.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we have reported a very simple strategy (combined sonication with sol-gel techniques) for synthesizing well-defined silica-coated carbon nanotube (CNT) coaxial nanocable without prior CNT functionalization. After functionalization with NH2 group, the CNT/silica coaxial nanocable has been employed as a three-dimensional support for loading ultra-high-density metal or hybrid nanoparticles (NPs) such as gold NPs, Au/Pt hybrid NPs, Pt hollow NPs, and Au/Ag core/shell NPs. Most importantly, it is found that the ultra-high-density Au/Pt NPs supported on coaxial nanocables (UASCN) could be used as enhanced materials for constructing electrochemical devices with high performance. Four model probe molecules (O-2, CH3OH, H2O2, and NH2NH2) have been investigated on UASCN-modified glassy carbon electrode (GCE). It was observed that the present UASCN exhibited high electrocatalytic activity toward diverse molecules and was a promising electrocatalyst for constructing electrochemical devices with high performance. For instance, the detection limit for H2O2 with a signal-to-noise ratio of 3 was found to be 0.3 mu M, which was lower than certain enzyme-based biosensors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The positive temperature coefficient (PTC) and negative temperature coefficient (NTC) effect of carbon black (CB) filled low density polyethylene (LDPE) composites was studied using electrical resistivity spectra, DSC, tensile mechanical analysis (TMA) and small-angle X-ray scattering (SAXS) techniques. The three LDPEs used have a similar crystallinity and different melting index (MI). The experimental results indicate that the CB has no significant effect on the crystallinity and the long spacing of crystalline domains of LDPE. Based upon the TMA and dynamic elastic modulus spectra, it can be concluded that the PTC effect is related to the thermal expansion of the polymer matrix, and the NTC effect is caused by a decrease of the elastic modulus of the polymer at high temperatures. The NTC effect can be reduced by enhancing either the elastic modulus or the interaction between carbon black and matrix. (C) 1997 Elsevier Science Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Physical protection is one of the important ways to stabilize organic carbon in soils. In order to understand the role of soils as a carbon sink or source in global climatic change and carbon cycles and properly manage soils as a carbon sink, we ought to know how many organic carbon (OC) in a given soil could be protected. By a density fractionation approach and ultrasonic technique, each soil sample was divided into three fractions: free light fraction (free-LF), occluded fraction (occluded-LF) and heavy fraction (HF). The obtained fractions were analyzed for total OC content, carbohydrate content and recalcitrant OC content. The results showed: (i) In the whole soil profile, dominance of OC consistently decreased in the following order: HF, free-LF, occluded-LF. This suggested that OC in soils were mostly protected. From 0-10 to 60-80 cm horizons, the OC in free-LF decreased from 25.27% to 3.72%, while OC in HF they were increased from 72.57% to 95.39%. The OC in occluded-LF was between 2.16% and 0.89%. (ii) Organic carbon recalcitrance in free-LF was similar to that in HF, and was even higher than that in HF below the surface horizon. This suggested that free-LF was not always the most fresh and non-decomposed fraction. OM quality of HF was higher than that of free-LF in the surface 10 cm below, namely the protected OM had higher quality than free OM in these horizons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Barium-functionalized multiwalled carbon nanotube yarns were fabricated by drawing and twisting multiwalled carbon nanotube forests through a solution containing barium nitrate. After heat activation under vacuum, the functionalized yarns were enriched in barium oxide due to the high surface-to-volume ratio of the nanotubes. The cathodes exhibited good thermionic properties, with a work function as low as 1.73-2.06 eV and thermionic current density that exceeded 185 mA/cm(2) in a field of 850 V/5 mm at 1317 K. The barium-functionalized yarns had high tensile strength of up to 420 MPa and retained strength of similar to 250 MPa after a 2 h activation process. (C) 2008 American Institute of Physics.