3 resultados para Canal anal

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Triplophysa waisihani, a new species of nemacheiline loach, is described from the Kax River, a tributary of the Ili River drainage in Xinjiang-Uighur Autonomous Region of Northwest China. It can be assigned to the T. labiata species group characterized by having widely separated anterior and posterior nostrils and no breeding tubercles on the sides of the head. Triplophysa waisihani resembles T. labiata and T. herzensteini, but differs from both in cephalic sensory-canal pattern and the structure of the gas bladder; from T. labiata in the structure of the pelvic girdle and absence or presence of the fourth basibranchial; and from T. herzensteini in the shape of the anal fin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bighead carp is one of the most important freshwater filter-feeding fish of Chinese aquaculture. In recent decades, there have been a number of contradictory conclusions on the digestibility of algae by bighead carp based on the results from gut contents and digestive enzyme analysis or radiolabelled isotope techniques. Phytoplankton in the gut contents of bighead carp (cultured in a large net cage in Lake Donghu) were studied during March-May. In biomass, the dominant phytoplankters in the fore-gut contents were the centric diatom Cyclotella (average 54.5%, range 33.8-74.3%) and the dinoflagellate Cryptomonas (average 22.8%, range 6.8-55.8%). Phytoplankton in water samples were generally present in proportionate amounts in samples from the fore-guts of bighead carp. The size of most phytoplankton present in the intestine of bighead carp was between 8 and 20 mum in length. Bighead carp was also able to collect particles (as small as 5-6 mum) much smaller than their filtering net meshes, suggesting the importance of mucus in collecting small particles, Examination of the change in the integrity of Cyclotella on passage through the esophagus of bighead carp indicated that disruption of the algal cell walls is principally by the pharyngeal teeth, explaining the previous contradictory conclusions. (C) 2001 Elsevier Science B.V. All rights reserved.