91 resultados para Camera
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
We present a novel X-ray frame camera with variable exposure time that is based on double-gated micro-channel plates (MCP). Two MCPs are connected so that their channels form a Chevron-MCP structure, and four parallel micro-strip lines (MSLs) are deposited on each surface of the Chevron-MCP. The MSLs on opposing surfaces of the Chevron-MCP are oriented normal to each other and subjected to high voltage. The MSLs on the input and output surfaces are fed high voltage pulses to form a gating action. In forming two-dimensional images, modifying the width of the gating pulse serves to set exposure times (ranging from ps to ms) and modifying the delay between each gating pulse serves to set capture times. This prototype provides a new tool for high-speed X-ray imaging, and this paper presents both simulations and experimental results obtained with the camera.
Resumo:
We describe our research on the employment of an infrared upconversion screen made of electron trapping material (ETM) in combination with the high sensitivity of the S-20 photocathode responsive to visible radiation to produce a streak camera arrangement capable of viewing and recording infrared incident pulses. The ETM-based upconversion screen converts 800-1600 nm infrared radiation to visible light which is viewed or recorded by the S-20 photocathode. The peak values of the upconversion efficiency are located at 1165 nm for CaS:Eu, Sm and 1060 nm for CaS:Ce, Sm. The present experiment showed time resolution was 12.3 ps for a CaS:Eu, Sm screen and 8.4 ps for a CaS:Ce, Sm screen. The minimum detectability is 4.8 x 10(-9) J/mm(2) (minimum detectability of the coupled visible streak camera is 8.3x10(-10) J/mm(2)). Other parameters, such as spatial resolution and dynamic range, have also been measured and analyzed. The results show ETM can be used in the measurement of infrared ultrafast phenomena up to picosecond time domain. In consideration of the limited number of trapped electrons in ETM, the infrared-sensitive streak camera consisting of an ETM-based upconversion screen is suitable to operate in the single shot mode. (C) 1999 American Institute of Physics. [S0034-6748(99)00112-4].
Resumo:
Experiments were performed, in a terrestrial environment, to study the migration and interaction of two drops with different diameters in matrix liquid under temperature gradient field. Pure soybean oil and silicon oil were used as matrix liquid and the drop liquid, respectively. The information on the motions of two drops was recorded by CCD camera system in the experiments to analyze the trajectories and velocities of the drops. Our experiments showed that, upon two drops approaching each other, the influence of the larger drop on the motion of the smaller one became significant. Meanwhile the smaller drop had a little influence on the larger one all the time. The oscillation of migration velocities of both drops was observed as they were approaching. For a short period the smaller drop even moved backward when it became side by side with the larger one during the migration. Although our experimental results on the behavior of two drops are basically consistent with the theoretical predictions, there are also apparent differences. 2006 Elsevier Ltd. All rights reserved. Keywords: Thermocapillary migration; Drop; Interaction; Oscillation 1. Introduction A bubble or drop will move when placed in another fluid with temperature gradient. This motion happens as a consequence of the variation of interfacial tension with temperature. Such a phenomenon is already known as Marangoni migration problem. With the development of microgravity science, bubble dynamics and droplet dynamics became a hot point problem of research because this investigation is very important for basic research as well as for applications in reduced gravity environment, such as space material science, chemical engineering and so on. Young et al. first investigated the thermocapillary migration of
Resumo:
The objective of this work was to apply visualization methods to the experimental study of cornstarch dust-air mixture combustion in a closed vessel volume under microgravity conditions. A dispersion system with a small scale of turbulence was used in the experiments. A gas igniter initiated combustion of the dust-air mixture in the central or top part of the vessel. Flame propagation through the quiescent mixture was recorded by a high-speed video camera. Experiments showed a very irregular flame front and irregular distribution of the regions with local reactions of re-burning behind the flame front. at a later stage of combustion. Heat transfer from the hot combustion products to the walls is shown to have an important role in the combustion development. The maximum pressure and maximum rate of pressure rise were higher for flame propagation from the vessel center than for flame developed from the top pan of the vessel. The reason for smaller increase of the rate of pressure rise, for the flame developed from the top of the vessel. in comparison with that developed from the vessel center, was much faster increase of the contact surface of the combustion gases with the vessel walls. It was found that in dust flames only small part of hear was released at the flame front, the remaining part being released far behind it.
Resumo:
The fluid mechanics of water entry is studied through investigating the underwater acoustics and the supercavitation. Underwater acoustic signals in water entry are extensively measured at about 30 different positions by using a PVDF needle hydrophone. From the measurements we obtain (1) the primary shock wave caused by the impact of the blunt body on free surface; (2) the vapor pressure inside the cavity; (3) the secondary shock wave caused by pulling away of the cavity from free surface; and so on. The supercavitation induced by the blunt body is observed by using a digital high-speed video camera as well as the single shot photography. The periodic and 3 dimensional motion of the supercavitation is revealed. The experiment is carried out at room temperature.
Resumo:
The property of crystal depends seriously on the solution concentration distribution near the growth surface of a crystal. However, the concentration distributions are affected by the diffusion and convection of the solution. In the present experiment, the two methods of optical measurement are used to obtained velocity field and concentration field of NaClO3 solution. The convection patterns in sodium chlorate (NaClO3) crystal growth are measured by Digital Particle image Velocimetry (DPIV) technology. The 2-dimentional velocity distributions in the solution of NaClO3 are obtained from experiments. And concentration field are obtained by a Mach-Zehnder interferometer with a phase shift servo system. Interference patterns were recorded directly by a computer via a CCD camera. The evolution of velocity field and concentration field from dissolution to crystallization are visualized clearly. The structures of velocity fields were compared with that of concentration field.