21 resultados para CSES-ESEB 2010
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The authors thank the anonymous reviewer for helpful comments on the early version of the manuscript. This work was financially supported by the earmarked fund for Modern Agro-industry Technology Research System, the Science Fund for Young Scholars in Sichuan Province (Grant No: ZQ 026-017), and the National 863 Project of China (No. 2008AA101001).
Resumo:
<正>2010年环境力学夏季讲习班于8月21日~25日在南京河海大学举办.本次讲习班由国家自然科学基金委员会数理科学部主办,河海大学承办,中国力学学会环境力学专业委员会、美国工程力学学会、江苏省力学学会、海岸灾害及防护教育
Resumo:
National Laboratory for Parallel and Distributed Processing; The University of Hong Kong
Resumo:
Edwardsiella tarda is a Gram-negative enteric pathogen that causes disease in both humans and animals. Recently, a type III secretion system (T3SS) has been found to contribute to Ed. tarda pathogenesis. EseB, EseC and EseD were shown to be secreted by the T3SS and to be the major components of the extracellular proteins (ECPs). Based on sequence similarity, they have been proposed to function as the 'translocon' of the T3SS needle structure. In this study, it was shown that EseB, EseC and EseD formed a protein complex after secretion, which is consistent with their possible roles as translocon components. The secretion of EseB and EseD was dependent on EscC (previously named Orf2). EscC has the characteristics of a chaperone; it is a small protein (13 kDa), located next to the translocators in the T3SS gene cluster, and has a coiled-coil structure at the N-terminal region as predicted by COILS. An in-frame deletion of escC abolished the secretion of EseB and EseD, and complementation of Delta escC restored the export of EseB and EseD into the culture supernatant. Further studies showed that EscC is not a secreted protein and is located on the membrane and in the cytoplasm. Mutation of escC did not affect the transcription of eseB but reduced the amount of EseB as measured by using an EseB-LacZ fusion protein in Ed. tarda. Co-purification studies demonstrated that EscC formed complexes with EseB and EseD. The results suggest that EscC functions as a T3SS chaperone for the putative translocon components EseB and EseD in Ed. tarda.