22 resultados para COUPLED-OSCILLATOR-SYSTEMS
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Synchronous chaos is investigated in the coupled system of two Logistic maps. Although the diffusive coupling admits all synchronized motions, the stabilities of their configurations are dependent on the transverse Lyapunov exponents while independent of the longitudinal Lyapunov exponents. It is shown that synchronous chaos is structurally stable with respect to the system parameters. The mean motion is the pseudo-orbit of an individual local map so that its dynamics can be described by the local map. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The first-passage time of Duffing oscillator under combined harmonic and white-noise excitations is studied. The equation of motion of the system is first reduced to a set of averaged Ito stochastic differential equations by using the stochastic averaging method. Then, a backward Kolmogorov equation governing the conditional reliability function and a set of generalized Pontryagin equations governing the conditional moments of first-passage time are established. Finally, the conditional reliability function, and the conditional probability density and moments of first-passage time are obtained by solving the backward Kolmogorov equation and generalized Pontryagin equations with suitable initial and boundary conditions. Numerical results for two resonant cases with several sets of parameter values are obtained and the analytical results are verified by using those from digital simulation.
Resumo:
Based on coupled map lattice (CML), the chaotic synchronous pattern in space extend systems is discussed. Making use of the criterion for the existence and the conditions of stability, we find an important difference between chaotic and nonchaotic movements in synchronization. A few numerical results are presented.
Resumo:
During its 1990 operation, 2 large RF systems were available on JET. The Ion Cyclotron Resonance Heating (ICRH) system was equipped with new beryllium screens and with feedback matching systems. Specific impurities generated by ICRH were reduced to negligible levels even in the most stringent H-mode conditions. A maximum power of 22 MW was coupled to L-mode plasmas. High quality H-modes (tau-E greater-than-or-equal-to 2.5 tau-EG) were achieved using dipole phasing. A new high confinement mode was discovered. It combines the properties of the H-mode regime to the low central diffusivities obtained by pellet injection. A value of n(d) tau-E T(i) = 7.8 x 10(20) m-3 s keV was obtained in this mode with T(e) approximately T(i) approximately 11 keV. In the L-mode regime, a regime, a record (140 kW) D-He-3 fusion power was generated with 10 - 14 MW of ICRH at the He-3 cyclotron frequency. Experiments were performed with the prototype launcher of the Lower Hybrid Current Drive (LHCD) systems with coupled power up to 1.6 MW with current drive efficiencies up to < n(e) > R I(CD)/P = 0.4 x 10(20) m-2 A/W. Fast electrons are driven by LHCD to tail temperatures of 100 keV with a hollow radial profile. Paradoxically, LHCD induces central heating particularly in combination with ICRH. Finally we present the first observations of the synergistic acceleration of fast electrons by Transit Time Magnetic Pumping (TTMP) (from ICRH) and Electron Landau Damping (ELD) (from LHCD). The synergism generates TTMP current drive even without phasing the ICRH antennae.
Resumo:
In this paper, we present an asymptotic method for the analysis of a class of strongly nonlinear oscillators, derive second-order approximate solutions to them expressed in terms of their amplitudes and phases, and obtain the equations governing the amplitudes and phases, by which the amplitudes of the corresponding limit cycles and their behaviour can be determined. As an example, we investigate the modified van der Pol oscillator and give the second-order approximate analytical solution of its limit cycle. The comparison with the numerical solutions shows that the two results agree well with each other.
Resumo:
A Nonlinear Fluid Damping (NFD) in the form of the square-velocity is applied in the response analysis of Vortex-induced Vibrations (VIV). Its nonlinear hydrodynamic effects oil the coupled wake and structure oscillators are investigated. A comparison between the coupled systems with the linear and nonlinear fluid dampings and experiments shows that the NFD model can well describe response characteristics, such as the amplification of body displacement at lock-in and frequency lock-ill, both at high and low mass ratios. Particularly, the predicted peak amplitude of the body in the Griffin plot is ill good agreement with experimental data and empirical equation, indicating the significant effect of the NFD on the structure motion.
Resumo:
The dynamics of long slender cylinders undergoing vortex-induced vibrations (VIV) is studied in this work. Long slender cylinders such as risers or tension legs are widely used in the field of ocean engineering. When the sea current flows past a cylinder, it will be excited due to vortex shedding. A three-dimensional time domain model is formulated to describe the response of the cylinder, in which the in-line (IL) and cross-flow (CF) deflections are coupled. The wake dynamics, including in-line and cross-flow vibrations, is represented using a pair of non-linear oscillators distributed along the cylinder. The wake oscillators are coupled to the dynamics of the long cylinder with the acceleration coupling term. A non-linear fluid force model is accounted for to reflect the relative motion of cylinder to current. The model is validated against the published data from a tank experiment with the free span riser. The comparisons show that some aspects due to VIV of long flexible cylinders can be reproduced by the proposed model, such as vibrating frequency, dominant mode number, occurrence and transition of the standing or traveling waves. In the case study, the simulations show that the IL curvature is not smaller than CF curvature, which indicates that both IL and CF vibrations are important for the structural fatigue damage.
Resumo:
We report on the design of a high diffraction efficiency multi-layer dielectric grating with wide incident angle and broad bandwidth for 800 nm. The optimized grating can achieve > 95% diffraction efficiency in the first order at an incident angle of 5 degrees from Littrow and a wavelength from 770nm to 830 nm, with peak diffraction efficiency of > 99.5% at 800 nm. The electric field distribution of the optimized multi-layer dielectric grating within the gratings ridge is 1.3 times enhancement of the incidence light, which presents potential high laser resistance ability. Because of its high-efficiency, wide incident, broad bandwidth and potential high resistance ability, the multi-layer dielectric grating should have practical application in Ti:sapphire laser systems.
Resumo:
Current fluctuations can provide additional insight into quantum transport in mesoscopic systems. The present work is carried out for the fluctuation properties of transport through a pair of coupled quantum dots which are connected with ferromagnetic electrodes. Based on an efficient particle-number-resolved master equation approach, we are concerned with not only fluctuations of the total charge and spin currents, but also of each individual spin-dependent component. As a result of competition among the spin polarization, Coulomb interaction, and dot-dot tunnel coupling, rich behaviors are found for the self- and mutual-correlation functions of the spin-dependent currents.
Resumo:
Strongly vertically coupled InAs/GaAs quantum dots (QDs) with modulation doping are investigated, and polarization dependence of two-color absorptions was observed. Analysis of photoluminescence (PL) and absorption spectra shows that s-polarized absorptions at. 10.0 and 13.4 mu m, stem from the first excited state E-1 and the second excited state E-2 in the QDs to the bound state E-InGaAs in the InGaAs spacer, respectively, whereas p-polarized absorptions at 10.0 and 8.2 mu m stem from the first excited state E-1 and the ground E-g in the QDs to the bound state E-InGaAs in the InGaAs spacer, respectively. These measurements illustrate that transitions from excited states are more sensitive to normal incidence, which are very important in designing QD infrared detector. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We study the disentanglement evolution of two spin qubits which interact with a general XY spin-chain environment. The dynamical process of the disentanglement is numerically and analytically investigated in the vicinity of a quantum phase transition (QPT) of the spin chain in both weak and strong coupling cases. We find that the disentanglement of the two spin qubits may be greatly enhanced by the quantum critical behavior of the environmental spin chain. We give a detailed analysis to facilitate the understanding of the QPT-enhanced decaying behavior of the coherence factor. Furthermore, the scaling behavior in the disentanglement dynamics is also revealed and analyzed.
Resumo:
National Basic Research Programme of China G2009CB929300 National Natural Science Foundation of China 10404010 6052100160776061Supported by the National Basic Research Programme of China under Grant No G2009CB929300, and the National Natural Science Foundation of China under Grant Nos 10404010, 60521001 and 60776061.
Resumo:
We investigate plasmon excitations in a quantum wire that consists of an infinite one-dimensional array of vertically coupled InAs/GaAs strained quantum dots (QDs). The research is carried out in the framework of random-phase approximation using effective-mass theory. Our formalism is capable of studying plasmons with strong tunneling among QDs, which frustrate the conventionally adopted tight-binding approximation. Based on this formalism, a systematic study on the intraminiband or intrasubband plasmon in vertically coupled InAs/GaAs strained QDs is presented. It is found that an increase of the dot spacing will inevitably reduce the plasmon energy. In contrast, the role of dot height is relatively complex and depends on the dot spacing. The results demonstrate the possibility to engineer collective excitations in low dimensional systems by simply changing their geometric configuration.
Resumo:
The full spectra of magnetoplasmons and single-particle excitations are obtained of coupled one-dimensional electron gases in parallel semiconductor quantum wires with tunneling. We show the effects of the interwire Coulomb interaction and the tunneling, as well as the magnetic-field-induced localization on the elementary excitations in symmetric and asymmetric coulped quantum wire structures. The interacton and resonance between the plasmon and the intersubband single-particle excitations are found in magnetic fields.
Resumo:
Based on an idea that spatial separation of charge states can enhance quantum coherence, we propose a scheme for a quantum computation with the quantum bit (qubit) constructed from two coupled quantum dots. Quantum information is stored in the electron-hole pair state with the electron and hole located in different dots, which enables the qubit state to be very long-lived. Universal quantum gates involving any pair of qubits are realized by coupling the quantum dots through the cavity photon which is a hopeful candidate for the transfer of long-range information. The operation analysis is carried out by estimating the gate time versus the decoherence time.