146 resultados para CORE-COLLAPSE SUPERNOVAE
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Until quite recently our understanding of the basic mechanical process responsible for earthquakes and faulting was not well known. It can be argued that this was partly a consequence of the complex nature of fracture in crust and in part because evidence of brittle phenomena in the natural laboratory of the earth is often obliterated or obscured by other geological processes. While it is well understood that the spatial and temporal complexity of earthquakes and the fault structures emerge from geometrical and material built-in heterogeneities, one important open question is how the shearing becomes localized into a band of intense fractures. Here the authors address these questions through a numerical approach of a tectonic plate by considering rockmass heterogeneity both in microscopic scale and in mesoscopic scale. Numerical simulations of the progressive failure leading to collapse under long-range slow driving forces in the far-field show earthquake-like rupture behavior. $En Echelon$ crack-arrays are reproduced in the numerical simulation. It is demonstrated that the underlying fracturing induced acoustic emissions (or seismic events) display self-organized criticality------from disorder to order. The seismic cycles and the geometric structures of the fracture faces, which are found greatly depending on the material heterogeneity (especially on the macroscopic scale), agree with that observed experimentally in real brittle materials. It is concluded that in order to predict a main shock, one must have extremely detailed knowledge on very minor features of the earth's crust far from the place where the earthquake originated. If correct, the model proposed here seemingly provides an explanation as to why earthquakes to date are not predicted so successfully. The reason is not that the authors do not understand earthquake mechanisms very well but that they still know little about our earth's crust.
Resumo:
The deposition of CdO center dot nH(2)O On CdTe nanoparticles was studied in an aqueous phase. The CdTe nanocrystals (NCs) were prepared in aqueous solution through the reaction between Cd2+ and NaHTe in the presence of thioglycolic acid as a stabilizer. The molar ratio of the Cd2+ to Te2- in the precursory solution played an important role in the photoluminescence of the ultimate CdTe NCs. The strongest photoluminescence was obtained under 4.0 of [Cd2+]/[Te2-] at pH similar to 8.2. With the optimum dosage of Cd(II) hydrous oxide deposited on the CdTe NCs, the photoluminescence was enhanced greatly. The photoluminescence of these nanocomposites was kept constant in the pH range of 8.0-10.0, but dramatically decreased with an obvious blue-shifted peak while the pH was below 8.0. In addition, the photochemical oxidation of CdTe NCs with cadmium hydrous oxide deposition was markedly inhibited.
Resumo:
By means of the matched asymptotic expansion method with one-time scale analysis we have shown that the inviscid geostrophic vortex solution represents our leading solution away from the vortex. Near the vortex there is a viscous core structure, with the length scale O(a). In the core the viscous stresses (or turbulent stresses) are important, the variations of the velocity and the equivalent height are finite and dependent of time. It also has been shown that the leading inner solutions of the core structure are the same for two different time scales of S/(ghoo)1/2 and S/a (ghoo)1/2. Within the accuracy of O(a) the velocity of a geostrophic vortex center is equal to the velocity of the local background flow, where the vortex is located, in the absence of the vortex. Some numerical examples demonstrate the contributions of these results.
Resumo:
The deposition of CdO center dot nH(2)O On CdTe nanoparticles was studied in an aqueous phase. The CdTe nanocrystals (NCs) were prepared in aqueous solution through the reaction between Cd2+ and NaHTe in the presence of thioglycolic acid as a stabilizer. The molar ratio of the Cd2+ to Te2- in the precursory solution played an important role in the photoluminescence of the ultimate CdTe NCs. The strongest photoluminescence was obtained under 4.0 of [Cd2+]/[Te2-] at pH similar to 8.2. With the optimum dosage of Cd(II) hydrous oxide deposited on the CdTe NCs, the photoluminescence was enhanced greatly. The photoluminescence of these nanocomposites was kept constant in the pH range of 8.0-10.0, but dramatically decreased with an obvious blue-shifted peak while the pH was below 8.0. In addition, the photochemical oxidation of CdTe NCs with cadmium hydrous oxide deposition was markedly inhibited.
Resumo:
An alternative fast-ignition method is proposed involving the formation of a hot spot outside the precompressed fusion-fuel core by a series of shocks driven directly by the light pressure of laser pulses of increasing intensities. It is shown that a hot spot, which can be of different material from that of the fuel core, with temperature similar to 10 keV and density similar to 200 g/cm(2), can be formed. Being an electrically neutral plasma, the hot spot can easily be sent into the fuel core. (c) 2005 American Institute of Physics.
Resumo:
We investigate the energy spectrum of ground state and quasi-particle excitation spectrum of hard-core bosons, which behave very much like spinless noninteracting fermions, in optical lattices by means of the perturbation expansion and Bogoliubov approach. The results show that the energy spectrum has a single band structure, and the energy is lower near zero momentum; the excitation spectrum gives corresponding energy gap, and the system is in Mott-insulating state at Tonks limit. The analytic result of energy spectrum is in good agreement with that calculated in terms of Green's function at strong correlation limit.
Resumo:
The mode-area, scaling properties of helical-core optical fibres are numerically studied and the limit of core size for achievable single-mode operation is explored. By appropriate design, helical-core fibres can operate in a single mode with possible scaling up to 300 mu m in core diameter with numerical aperture 0.1.
Resumo:
A phase-locking fibre laser array with up to 60 W of coherent output power based on two large-core fibre is reported. The slope efficiency of the in-phase mode is 37%. For two cases of spacings between the cores, steady high-contrast interference stripes are observed. When the whole system operates under a high pump power level, no thermal effects for the spatial filter have been observed, which means that we can increase the coherent output power further by increasing the individual fibre laser power.
Resumo:
We provide a novel hollow-core holey fibre that owns a random distribution of air holes in the cladding. Our experiments demonstrate that many of the features previously attributed to photonic crystal fibres with perfect arrangement of air holes, in particular, photonic bandgap guidance, can also be obtained in the fibre. Additionally, this fibre exhibits a second guided mode with both the two-lobe patterns, and each pattern is in different colour.
Resumo:
Two three-dimensional structure models of the 21nt oligodeoxyribonucleotides, CPI (G3TG-2TGT2G5TG2TGT) and CP3 (TGTG2TGST2GTG2TG3), were constructed by InsightII (MSI) software in IRIS Indigo2 (SGI) workstation using the crystal structure of TAT tripler formation as the template. The initial structures subsequently were minimized by molecular mechanics. The final structures were believed as the dominant conformation. The results showed that the energy of CP1 is lower than that of CP3, and the former is more stable than the latter. Moreover, the results further proved that the 21nt oligodeoxyribo-nucleotide CP1 stably combines with the core promoter (Cp) fragment of hepatitis B virus (HBV) to form a tripler DNA, and CP1 specifically inhibits a specific cellular factor (DNA binding protein) binding to Cp fragment. These results indicated that specific repression of gene transcription of HBV DNA might be possible by tripler-formation DNA.